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Abstract
Aim: Whether entire communities of organisms converge towards predictable struc-
tural properties in similar environmental conditions remains controversial. We tested 
for community convergence in birds by comparing the structure of oceanic archipel-
ago assemblages with their respective regional species pools.
Location: Eighteen major oceanic archipelagos of volcanic origin with global 
distribution.
Major taxa studied: Terrestrial birds.
Methods: We compiled a comprehensive database of morphological trait and phylo-
genetic data for 6,579 bird species, including species known to have become extinct 
owing to human activities. We quantified morphological and phylogenetic dissimi-
larity among species between pairs of archipelagos, using a modified version of the 
mean nearest taxon distance. We tested for convergence by estimating whether over-
all mean turnover among archipelagos and pairwise turnover between archipelagos 
were lower than expected by chance.
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1  |  INTRODUC TION

Whether spatially isolated ecological communities tend to converge 
in similar environmental conditions towards predictable structural 
properties, such as traits or functional space occupied, has remained 
a controversial question for half a century (Blondel et al.,  1984; 
Cody & Mooney, 1978; Fukami et al., 2005; MacArthur, 1972; Mazel 
et al.,  2018; Melville et al.,  2006; Moen et al.,  2016; Ricklefs & 
Travis, 1980; Samuels & Drake, 1997; Santos et al., 2016; Winemiller 
et al.,  2015). Although evolutionary convergence (the emergence 
of similar species traits or syndromes from divergent evolutionary 
starting points in geographically distant but environmentally similar 
locations) is a well-established phenomenon (e.g., Gillespie,  2004; 
Losos et al.,  1998; Mahler et al.,  2013; Muschick et al.,  2012; 
Schluter,  2000), the question of whether convergence applies to 
entire communities remains open to debate. For example, histori-
cal contingencies (legacies from previous system states) vary across 
regions and typically generate unpredictable outcomes in the struc-
tural properties of local communities (Gould, 1989; see also discus-
sion by Losos & Ricklefs, 2009).

A major challenge for the study of community convergence is 
posed by extinct taxa. In particular, if anthropogenic extinctions are 
non-random (e.g., Sayol et al., 2020; Steadman, 2006) and biased to-
wards outliers, such as the largest and smallest species in an assem-
blage (e.g., Ripple et al., 2017), then apparent evidence of community 
convergence might be explained by non-random or clustered extinc-
tions rather than by any deterministic process based on environmental 
filtering or evolutionary adaptation (Tobias et al., 2020). Robust tests 
of community convergence therefore need to account for extinct 
taxa, particularly in island systems where anthropogenic extinctions 

have often altered native communities (e.g., Boyer, 2008; Boyer & 
Jetz, 2014; Sayol et al., 2021; Sobral et al., 2016; Steadman, 2006). 
However, previous studies of community convergence, most of which 
have focused on islands, have rarely (if ever) accounted for extinctions.

To date, community-level convergence has primarily been 
tested, and in some cases detected, at the level of individual islands 
(e.g., Gillespie, 2004; Losos, 2011; Mahler et al., 2013), but has never 
been evaluated at the archipelago level. Nonetheless, several filter-
ing processes operate at the scale of archipelagos (Figure 1), with 
convergence generated via two primary pathways:

(1) the non-random selection of colonists reaching the archi-
pelago from the regional species pool, resulting in greater phylo-
genetic or morphological similarity than expected by chance; and 
(2) in situ evolutionary change, including lineage diversification, lead-
ing to greater trait similarity among archipelagos than expected by 
chance (Barnagaud et al., 2014; Emerson & Gillespie, 2008; Grant & 
Grant, 2008; Losos & Ricklefs, 2009; Weigelt et al., 2015; Wiens & 
Graham, 2005). The relative contribution of these alternative path-
ways to community convergence is unclear, although they should 
leave different signatures in the community structure of native non-
endemic and endemic lineages, respectively.

To test for community convergence in the phylogenetic and mor-
phological structure of oceanic archipelago bird assemblages, in re-
lationship to their respective regional species pools, we compiled 
comprehensive data on species composition, phylogenetic history and 
morphological traits for birds occurring on volcanic archipelagos across 
the Pacific, Atlantic and Indian oceans. Given that faunal assembly is 
mostly sourced from larger, older and more complex continental pools, 
we also collected equivalent data for a far larger number of bird spe-
cies occurring in the continental source pools for each archipelago (see 

Results: For all land birds, we found that turnover in body plan, body mass and phylog-
eny among archipelagos was significantly lower than expected. Seventeen (of 18) ar-
chipelagos showed significant body plan and phylogenetic similarity with at least one 
other archipelago. Similar convergent patterns of community assembly were detected 
in different subsamples of the data (extant species, endemics, native non-endemics, 
and Passeriformes only). Convergence was more pronounced for extant species than 
for extant and extinct species combined.
Main conclusions: Consistent convergence in phylogenetic and morphological struc-
ture among archipelagic communities arises through a combination of non-random 
colonization and in situ adaptation. In addition, by including data from extinct taxa, 
we show that community convergence both precedes and is accentuated by the an-
thropogenic extinction of endemic lineages. Our results highlight the potential role of 
non-random extinction in generating patterns of community convergence and show 
that convergence existed even before anthropogenic extinctions, owing to determin-
istic community assembly in similar environmental settings at the global scale.

K E Y W O R D S
birds, community assembly, convergence, determinism, extinct species, historical contingency, 
island biogeography, morphological traits, oceanic archipelagos
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also Cardillo et al., 2008; Graves & Gotelli, 1983; Santos et al., 2016 for 
previous approaches). We focused on all extant land-bird species, in 
addition to lineages driven to extinction by anthropogenic causes. The 
focal archipelagos share five key features: limited land area, persistent 
geographical isolation, volcanic origin, tropical/subtropical latitude and 
oceanic climate (Gillespie & Clague, 2009; Triantis et al., 2015; Weigelt 
et al., 2013; Whittaker & Fernández-Palacios, 2007).

Volcanic oceanic archipelagos have long been considered ideal 
systems for exploring the processes structuring ecological commu-
nities, inasmuch as they represent replicated natural experiments in 
faunal assembly (e.g., Grant & Grant, 2008; Losos & Ricklefs, 2009; 
Whittaker & Fernández-Palacios,  2007). At the archipelagic level, 

island communities respond to the insular geography on evolutionary 
time-scales, with species undergoing “taxon cycles” (i.e., sequential 
phases of expansion and contraction across an archipelago (Ricklefs 
& Bermingham, 2002; Wilson, 1961), and with the divergence of pop-
ulations in allopatry being, arguably, the main driving force of diversi-
fication (Grant & Grant, 2008; Losos & Ricklefs, 2009). Thus, oceanic 
archipelagos can be seen as macroevolutionary metacommunities 
(i.e., sets of interacting island communities linked by dispersal). They 
therefore represent a higher level of hierarchical organization than 
individual islands and are amenable to framing analyses of large-scale 
patterns, such as community-level convergence (see also Triantis 
et al., 2015; Valente et al., 2020; Whittaker et al., 2017).

F I G U R E  1  Quantifying convergent properties of archipelagic communities. If subsets of bird species from distinctive regional pools 
reach archipelagos A and B, the constraints of dispersal and environmental filters potentially select species with similar traits from the 
same regions of the evolutionary tree. In situ cladogenesis (archipelagic speciation) generates endemic lineages, further modifying the 
morphological and phylogenetic profiles of archipelagic communities, theoretically increasing the number of species with combinations of 
traits adapted to insular environments. Thus, morphological or functional similarity between archipelagos can reflect a combination of (a) 
non-random characteristics of colonizing lineages, and (b) subsequent convergent evolution. Species highlighted in red are anthropogenic 
extinctions, which, if also non-random, can generate or strengthen patterns of convergence. Robust analyses of community convergence 
therefore need to account for the role of extinctions. Pictograms are courtesy of PhyloPic (www.phylo​pic.org), and the image of Hawaiian 
honeycreepers is reproduced, with permission, from Pratt (2005)
[Correction added on 23 June 2022, after first online publication: Figure 1 has been updated.]
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We developed a novel framework to test for community con-
vergence in both morphological and phylogenetic structure of archi-
pelagic land-bird faunas relative to their respective regional species 
pools (Figure 2a). To assess the influence of different assembly or 
disassembly mechanisms, we re-ran our analyses on five subsam-
ples: (1) native non-endemic species; (2) endemic species (including 
extinct species); (3) a subsample with all extinct species removed; 
and (4) a monophyletic group (i.e., Passeriformes) that is also the 
largest order of birds. Our results show that multiple dimensions 
of archipelagic bird communities are more similar than expected by 
chance, even accounting for the influence of extinction, providing 

strong support that community convergence arises through deter-
ministic community assembly.

2  |  MATERIAL S AND METHODS

2.1  |  Species lists and regional pools

Contemporary biogeographical patterns on islands have been 
strongly influenced by historical and prehistoric anthropogenic ex-
tinctions (Hume, 2017; Steadman, 2006; Valente et al., 2020). Thus, 

F I G U R E  2  Island avifaunas converge on repeated patterns of morphological and phylogenetic structure. (a) Assignment of 18 
archipelagos to nine biogeographical regions (Supporting Information Tables S1–S3). Regions are indicated by colour and archipelagos by 
the following abbreviations: Aus = Austral islands; Azo = Azores; Can = Canaries; CkI = Cook Islands; Com = Comoros; FdN = Fernando 
de Noronha; Gal = Galápagos; GoG = Gulf of Guinea; Haw = Hawaii; JFe = Juan Fernández; Mad = Madeira; Mar = Marquesas; 
Mas = Mascarenes; Pit = Pitcairn; Rev = Revillagigedo; Sam = Samoa; Soc = Society; TdC = Tristan da Cunha. (b–g) Similarity analyses for 
body plan, body mass and phylogeny for all land birds (b–d; n = 495 species) and for Passeriformes (e–g; n = 284 species). The panels provide 
results for all (ALL), native non-endemic (NAT) and endemic (END) species, including extinct species, in addition to a comparison with extant 
species (NEX; i.e., with all extinct species removed). Dots indicate average turnover between pairs of archipelagos (among-archipelago 
turnover); numbers on dots are sample sizes (number of archipelagos). The values of MNTDTURN for body plan (unitless) and body mass 
(log10[g]) were calculated using Euclidean distances between species, and the MNTDTURN for phylogeny was calculated using cophenetic 
distances (in millions of years) between species. Violin plots show the distribution of average MNTDTURN calculated from 1,000 simulations 
using a null model with random morphological and phylogenetic structure. Boxes show p-values of one-tailed tests (red = significant; 
black = non-significant)
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to understand how species' arrivals and subsequent evolutionary dy-
namics interact to establish patterns of trait diversity, it is important 
to include species known to have become extinct owing to human 
activities. We collected data on composition and species-level traits 
for the avifaunas of 18 volcanic oceanic archipelagos: Austral islands, 
Azores, Canaries, Comoros, Cook Islands, Fernando de Noronha, 
Galápagos, Gulf of Guinea, Hawaii, Juan Fernández, Madeira, 
Marquesas, Mascarenes, Pitcairn, Revillagigedo, Samoa, Society and 
Tristan da Cunha (Table 1; Figure 2; Supporting Information Table S1). 
For each archipelago, we collated lists of the endemic and native 
non-endemic species, including all known species extinctions since 
human colonization (e.g., BirdLife International, 2017; Hume, 2017; 
Sayol et al., 2020; Steadman, 2006; Valente et al., 2020). A list of 
the data sources is provided in the Appendix (see also Supporting 
Information Data S1; Table S2). Roughly one-third (157) of the spe-
cies are extinct (Supporting Information Data S1). To focus our anal-
yses on species strictly relying on terrestrial habitats, we restricted 
our sample to land birds, excluding marine and aquatic species. Of 
495 species in our sample, 348 (70%) are archipelagic endemics, 
highlighting the evolutionary independence of many archipelagic av-
ifaunas. However, there are cases of non-endemic archipelagic spe-
cies that are inferred to have colonized the archipelago in question 
from a nearby archipelago, such as Anthus berthelotii and Serinus ca-
narius, both endemic to Madeira and the Canary Islands (see Valente 
et al., 2020). However, only 41 (8%) native non-endemic species are 
present on more than two archipelagos.

To generate regional pools of species as sources for the assem-
bly of each archipelago, we identified the avifaunal regions to which 

they belong, based on the study by Holt et al.  (2013) (Figure  2a; 
Supporting Information Table S2). These 10 regions contain 6,231 
land-bird species (Supporting Information Data S2). To validate and 
improve our approach, we compared the zoogeographical region as-
signed to each archipelago from the paper by Holt et al. (2013) with 
source region reconstructions based on phylogenetic relationships 
between island and mainland species found in the literature, when 
available. Despite some discrepancies, including a few cases where 
the species pool was a nearby archipelago rather than the mainland, 
we found that the zoogeographical regions in the paper by Holt 
et al. (2013) were closely aligned with the source region reconstruc-
tions (see Supporting Information). We also tested the sensitivity 
of our approach to a more spatially restricted definition of species 
pools by defining a buffer of 100 km width from the nearest coast to 
each archipelago and sampling only bird species with a geographical 
distribution overlapping with the buffer. Additionally, to remove any 
biases arising from the way in which source pools are delimited, we 
conducted a further set of analyses restricted to archipelagos in the 
same zoogeographical region (i.e., with a common source pool). This 
was possible for Macaronesia (Azores, Madeira and Canary Islands 
archipelagos) and the South Pacific (Austral Islands, Cook Islands, 
Marquesas, Samoa, Pitcairn and Society), the only two regions with 
more than two archipelagos (see Supporting Information).

Defining an appropriate species pool for archipelagos poses sub-
stantial challenges (e.g., Si et al., 2022). The sensitivity analyses de-
scribed above provide an assessment of species pool selection, but 
some limitations to our approach should be highlighted: (1) zoogeo-
graphical regions were defined using current species distributions, 

Archipelago
Species 
richness

Endemic 
species

Extinct 
species

Colonization events 
(minimum–maximum)

Austral 7 6 4 5–7

Azores 20 7 5 17–20

Canaries 61 16 4 58–59

Comoros 52 22 0 46

Cook Islands 21 12 9 17–20

Fernando de Noronha 4 3 1 4

Galápagos 30 26 1 13

Gulf of Guinea 60 28 0 53

Hawaii 100 99 68 13–17

Juan Fernández 9 3 0 8

Madeira 32 10 7 29–32

Marquesas 26 22 14 16–20

Mascarenes 49 47 29 32–45

Pitcairn 8 8 3 7

Revillagigedo 16 5 1 15

Samoa 30 12 2 30

Society 24 15 14 21–24

Tristan da Cunha 7 7 0 5

Note: For the respective numbers of Passeriformes, see the Supporting Information.

TA B L E  1  Species richness, numbers 
of endemic and extinct species and 
the retrieved minimum and maximum 
numbers of colonization events for each 
of the 18 archipelagos, for all land birds
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and thus might not accurately represent species distributions at the 
time of colonization; (2) all species in a given pool have the same 
probability of colonizing and establishing on the focal archipelago, 
and thus the approach does not account for differences in dispersal 
ability and niche compatibility (e.g., climate, resource use) between 
species; and (3) source pools defined at the species level potentially 
misrepresent the available pool of colonizers, and at least one recent 
study advocates focusing on higher taxa (genera or families) with geo-
graphical distributions overlapping with the focal assemblage (see Si 
et al., 2022). An additional factor is that extinct species were included 
in the archipelago species lists, but not for the regional pools, primar-
ily owing to the lack of accurate distributional data for extinct conti-
nental species. However, this inconsistency seems unlikely to bias our 
results because recent extinctions have been far more prevalent in 
island communities than in continental source regions. Of all known 
bird extinctions globally, island endemics comprise 81% (468 of 581 
species) of extinctions during the last 125,000 years, and 93% of ex-
tinctions since 1500 AD (Sayol et al., 2020).

2.2  |  Morphological and phylogenetic data

We collated a range of morphometric data for our combined sample 
of 6,579 species (Supporting Information Data S1 and S2). For each 
extant study species (n = 6,423), we used a global dataset derived 
from linear measurements of wild birds and museum specimens (Pigot 
et al., 2020; Tobias et al., 2022) to compile estimates of wing length, 
tail length, tarsus length and beak length (in millimetres). These traits 
were selected because they reflect the overall body plan (Bauplan) 
and are correlated with important dimensions of the avian niche, such 
as habitat use, dispersal and foraging strategy (Pigot et al.,  2020). 
We also compiled body mass (in grams) from the study by Wilman 
et al. (2014). For 36 (23%) of 175 extinct species, measurements were 
extracted from specialist literature. A list of the data sources is given 
in the Appendix (see also Supporting Information Data S1 for sources, 
including Amadon, 1950; Rothschild, 1907). For a further 121 (77%) 
extinct species with missing data, we inferred morphological and 
body mass measurements from the most morphologically similar 
extant species available, selecting congeners where possible (Tobias 
et al., 2022). Extant surrogate species were selected based on key 
skeletal measurements, including the mandible for beak length, hu-
merus for flight capabilities or flightlessness, and the ratio of femur/
tibiotarsus/tarsometatarsus to highlight arboreal or terrestrial modi-
fications (Steadman, 2006). Given that flightless species tend to be 
relatively heavy, we estimated the body mass of extinct flightless 
taxa known only from fossil remains with reference to similar-sized 
extant flightless species (e.g., flightless rails; J. P. Hume, unpublished 
data). Given that all trait data were calculated as species averages, we 
do not account for intraspecific variation, although previous analyses 
have shown this to be negligible in comparison to interspecific varia-
tion in the same avian traits at global scales (Tobias et al., 2022).

All morphological traits were log10-transformed before analy-
ses to avoid the influence of extreme trait values and to linearize 

data distributions for regressions. To quantify differences in body 
plan between species, we measured morphological dissimilarity 
using log10-transformed lengths of the tail, tarsus, beak and wing 
after accounting for differences in body mass. We obtained these 
size-corrected traits using the residuals from a linear regression of 
trait size against body mass (i.e., the log10-transformed lengths of 
the tail, tarsus, beak and wing were regressed separately against 
log10-transformed body mass to calculate the residuals; e.g., Ingram 
& Kai, 2014; Supporting Information Figure S1).

We based our analyses on the phylogenetic tree from the study 
by Jetz et al. (2012), using the Ericson backbone with 9,993 species. 
We selected this backbone topology because it represents a reason-
ably well-supported hypothesis of the relationships among extant 
taxa and has been used in many recent studies of avian macroevo-
lution. From a posterior distribution of 1,000 trees obtained from 
www.birdt​ree.org, we generated a single maximum clade credibility 
tree using TreeAnnotator (Drummond et al., 2012). We grafted all 
extinct species (157) onto this tree using taxonomic constraints and 
information from the literature (see Supporting Information).

2.3  |  Colonization events

We estimated the number of colonization events for each archi-
pelago according to the following rules. When explicit phylogenetic 
hypotheses were available (e.g., Valente et al., 2020), we examined 
whether congeneric endemic species from a particular archipelago 
formed a monophyletic group and assumed that such cases were 
the product of a single colonization event (Cornuault et al., 2013). 
Thus, for a particular archipelago, the number of colonization events 
generating the current endemic avifauna is equal to the number of 
clades present (mostly genera). Each native non-endemic species 
was counted as one colonization event.

Molecular data are lacking for most archipelagic extinct species, 
which can lead to phylogenetic uncertainty; therefore, we estimated 
the minimum and maximum number of colonization events for these 
species. The minimum number of events was calculated by assuming 
that congeneric extinct endemics of an archipelago were monophy-
letic, thus representing a single colonization; the maximum number 
of events was calculated by assuming that extinct genera were non-
monophyletic, with each species representing a different coloniza-
tion event (see sections B3 and C3 in the Supporting Information). 
Subsequent analyses were implemented in two ways, initially using 
the minimum number of colonization events, then by randomly se-
lecting a number of colonization events between the minimum and 
the maximum.

2.4  |  Measuring morphological and phylogenetic 
convergence

We quantified differences in body mass, body plan (using body mass-
corrected wing, tail, tarsus and beak length; Supporting Information 

http://www.birdtree.org
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Figure S1, Table S4) and phylogenetic dissimilarity among species, 
between pairs of archipelagos, using a modified version of the mean 
nearest taxon distance (MNTD). This metric was designed to focus 
solely on morphological or phylogenetic turnover (replacement of 
species traits or phylogenetic lineages across archipelagos), and herein 
we refer to it as MNTDTURN (Holt et al., 2018; Webb et al., 2008). For 
a pair of archipelagos, A and B, MNTDTURN is computed as follows:

where n and m are the species richness of archipelagos A and B, re-
spectively, min diB is the distance (either morphological or phyloge-
netic) between each species i of archipelago A and the nearest (in 
terms of either morphological or phylogenetic distance) species of ar-
chipelago B, and min djA is the distance between each species j of archi-
pelago B and the nearest species of archipelago A. If the least diverse 
archipelago has no unique species, then MNTDTURN is zero. Moreover, 
if both archipelagos have completely different species and their spe-
cies richness is equal, then MNTDTURN equals MNTD (see Supporting 
Information Section B1). Morphological distances (for both body mass 
and body plan) between species across archipelagos were measured 
using Euclidean distances, and pairwise phylogenetic distances be-
tween species were quantified using a cophenetic distance matrix (i.e., 
the phylogenetic branch length distance between species).

2.5  |  Null model

We tested for a pattern of convergent community structure by 
estimating whether overall mean turnover (MNTDTURN) among ar-
chipelagos, and each pairwise MNTDTURN value between archipela-
gos, was lower than expected by chance. To do so, we compared 
observed turnover values with those simulated under a null model 
with random phylogenetic and morphological differentiation. For 
each archipelago, we simulated a null morphospace and phylogeny, 
constraining our model to the same number of species, endemic spe-
cies and colonization events as those observed for the archipelago 
(Table 1; Supporting Information Tables S2 and S5). To simulate a null 
morphospace and phylogeny for a given archipelago, we first started 
by randomly sampling colonizers from the respective regional pool 
(see Species lists and regional pools). Once sampled, each colonizer 
was assigned randomly to a specific trajectory: either it stays un-
changed (native non-endemic) or it speciates (becomes endemic) 
via anagenesis or cladogenesis (Supporting Information Figure S2), 
with the number of native non-endemic and endemic species being 
constrained to the current totals observed in the archipelago (see 
Supporting Information Figure S2). For instance, if two colonization 
events have generated current totals of one native non-endemic and 
five endemic species, respectively, in a particular archipelago, then 
in our simulation, one colonizer fails to speciate or evolve new traits, 
whereas the other gives birth to a monophyletic clade of five en-
demic species.

For each colonizer that undergoes speciation, morphological 
features of the resulting endemic species were simulated through a 
Brownian motion (BM) model of evolution (Freckleton et al., 2002). 
Under a BM model, a trait value changes as a function of time (t) 
and rate (σ2), such that the simulated value is normally distributed, 
with the mean equal to its initial value (x0) and the variance equal to 
the product of rate and time. For body mass, simulations were per-
formed using a univariate BM model, and for body plan, a multivari-
ate BM framework was used to fit the BM model simultaneously to 
the four size-corrected traits together, while assuming that traits are 
correlated (Clavel et al., 2015). The BM model was implemented on 
a birth–death (BD) tree (Supporting Information Figure S2), with the 
number of branches corresponding to the number of species in the 
endemic clade (see details in Supporting Information- Part B2. Null 
models). The time since the most recent common ancestor was fixed 
for the stem node at the geological age of the archipelago (using 
the oldest island currently present; Valente et al., 2020; Supporting 
Information Table S1).

To simulate the BD tree, we identified the family to which each 
speciating island-colonizer belongs, then estimated speciation rate (λ) 
and extinction rate (μ) for that family using the phylogeny retrieved 
from 6,231 land-bird species of the 10 avifaunal regions included in 
our study (the 349 endemic species of 18 archipelagos were excluded 
from these analyses). For families with <10 species, we sampled spe-
cies more widely from the order to which the family belongs (see 
Supporting Information Section B2). We then applied a BM model to 
the branches of the BD tree using the estimated trait value of the spe-
ciating colonizer (i.e., the ancestral state x0) as a starting point, and 
the σ2 value was retrieved by fitting a BM model (univariate for body 
mass; multivariate for body plan) to the phylogeny and the traits of the 
family members as identified above. Therefore, for a given archipelago 
A, a species S belonging to the family F is randomly selected from the 
regional pool of potential colonizers and is allowed to generate an en-
demic clade containing N species. We used: (1) the geological age of 
archipelago A, with λ and μ values estimated for the tree of the family 
F, to create the tree of the endemic clade using the BD tree; and (2) 
the trait value of S as the ancestral state, with σ2 estimated for the 
tree and traits of family F, to generate trait values for the N species 
along the BD tree previously generated. It should be noted that, for 
the colonizers that stayed unchanged (native non-endemic species), 
the island species was simply assigned the morphological traits of the 
mainland species.

We constructed a null phylogeny for each simulation by retain-
ing the phylogenetic relationships between colonizers randomly se-
lected from the pool as a backbone tree onto which we grafted the 
associated simulated BD tree(s) of the endemic clade. For each ar-
chipelago, the simulation protocol was independently implemented 
1,000 times. Simulated data (body mass, body plan and phylogeny) 
were used to generate 1,000 random values for each pairwise 
MNTDTURN value and 1,000 average pairwise MNTDTURN values 
among all pairs of archipelagos. To test whether archipelagos over-
all were convergent in morphological and phylogenetic structure in 
relationship to their respective species pools, we tested whether 

MNTD(TURN)A,B = min

[(

1

n

n
∑

i=1

min
(

diB
)

)

,

(

1

m

m
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min
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)]
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pairwise turnover and average turnover (measured by MNTDTURN) 
were less than expected under the null model simulation (one-
tailed test). To compare the relative roles of potential influences on 
community convergence, we also calculated how far the observed 
overall mean MNTDTURN among archipelagos deviated from null 
expectations using the standardized effect size (SES). The SES was 
calculated as (MNTDTURN − μsim)/σsim, where μsim is the mean index of 
the simulated values, and σsim is the associated standard deviation. 
Negative SES values indicate lower morphological/phylogenetic 
MNTDTURN than expected by chance (i.e., negative numbers farther 
from zero indicate stronger convergence).

Null model approaches that involve sampling from a (larger) 
species pool can suffer high type I error rates owing to differences 
between the species richness of the focal assemblages and that of 
the pool (Kraft et al., 2007). To evaluate the type I error of our ap-
proach in detecting community convergence, we first designed a 
set of simulations to test the type I error associated with using the 
metric MNTDTURN to detect community convergence by using dif-
ferent combinations of community (i.e., archipelago) and pool size 
(i.e., regional pool). Second, we re-ran our convergence analyses by 
randomly selecting, for each archipelago, a subset of the species in 
the pool. Two subset sizes were used, corresponding to the number 
of species where the species richness of an archipelago represented 
30 and 60% of the pool (Kraft et al., 2007; for further details of our 
approach, see Supporting Information Section C2).

2.6  |  Assessing mechanisms of convergence

To evaluate the effects of different assembly processes and to ex-
clude the effects of extinction (Figure 1), we conducted analyses 
for all land birds, including both extant and extinct species. We an-
alysed archipelagic non-endemic and endemic species separately 
to tease apart the roles of colonization and in situ adaptation. 
To assess whether extinction explains patterns of convergence, 
we excluded extinct species and restricted our dataset to native 
bird species that have so far survived the filter effect of anthro-
pogenic activities on each archipelago. To reduce the ecological 
variation in our sample of species and test whether convergence 
is significant within more homogeneous groups of species, we re-
ran all analyses restricted to the monophyletic order of passerines 
(Passeriformes).

We tested further for patterns of non-random colonization by 
comparing the taxonomic composition of each archipelago with its 
respective species pool, at the family level. We used two metrics: (1) 
a simple count of families in each archipelago; and (2) the dissimilar-
ity in family composition (see Supporting Information Section C5) 
and the proportion of shared species per family between the archi-
pelago and its associated species pool. Both the observed number of 
families and dissimilarity were compared against 1,000 null values 
generated by randomly selecting from the species pool the same 
number of species as observed in the respective archipelagos.

Further details of all methods are given in the Supporting 
Information Sections B and C. All statistical analyses were imple-
mented within the R programming environment (R Core Team, 2019).

3  |  RESULTS

Simulations showed that our framework for testing community 
convergence had very low type I error, and convergence detection 
was not sensitive to community size or pool size (see Supporting 
Information Figures S2 and S4).

When all extant and extinct land-bird species were analysed to-
gether, we found that turnover in body plan, body mass and phy-
logeny among the 18 archipelagos was significantly lower than 
expected by chance (i.e., lower MNTDTURN than expected), indicat-
ing convergence in community structure (Figure 2b–d; Supporting 
Information Table S6). The strongest evidence for convergence was 
detected in phylogenetic structure. Results were similar when we 
restricted analyses to Passeriformes only, with the exception of 
body mass, which did not appear to show a pattern of community 
convergence (Figure 2e–g; Supporting Information Table S6). All ar-
chipelagos (except Juan Fernández) exhibited significant body plan 
and phylogenetic similarity (i.e., lower pairwise MNTDTURN than ex-
pected) with at least one other archipelago (Figure 3a–c). For body 
mass, several archipelagos showed no significant similarity with any 
other archipelago (Figure 3b,e). The lack of significant findings for 
Juan Fernández was attributable to the presence of two humming-
bird species (Sephanoides fernandensis and Sephanoides sephaniodes, 
Trochilidae) on the archipelago, the only species in this morpholog-
ically distinct family present on any oceanic archipelago included in 
this study. A re-analysis of the convergence pattern without the two 
hummingbirds showed convergence of Juan Fernández with at least 
four archipelagos for body plan and phylogeny, but still no evidence 
of convergence for body mass (Supporting Information Figure S5).

Sensitivity analyses (Supporting Information) revealed these 
findings generally to be robust to: (1) assumptions regarding spe-
cies pool definition; and (2) the estimated number of colonization 
events; with the analysis based on the number of colonization 
events randomly selected between the minimum and maximum 
numbers retrieved from the literature providing similar results to 
the main analysis (Table  1; Supporting Information Tables S7–S9). 
Our analyses testing for differences in taxonomic composition be-
tween archipelagos and their species pools for all land birds revealed 
that most of the avifauna in each of the 18 archipelagos was dom-
inated by two main orders, passerines (Passeriformes) and pigeons 
(Columbiformes), with the latter being overrepresented on islands 
compared with the respective zoogeographical regions (Supporting 
Information Table S10). In addition, we found a significantly reduced 
number and different composition of families in most archipelagos 
compared with null expectations (Supporting Information Table S11), 
both for all land birds and for Passeriformes only.

Significant convergence in body plan, body mass and phyloge-
netic structure was also found for the native non-endemic species 
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subset, suggesting that non-random patterns of colonization (and 
persistence) play an important role in establishing overall conver-
gence patterns. Significant convergence in body plan and phyloge-
netic structure was detected for native non-endemic Passeriformes 
(Supporting Information Table S6), but these results have to be in-
terpreted with caution because they are based on a smaller sample 
size (seven archipelagos). We also found significant convergence in 
body plan and phylogenetic structure (but not body mass) in the en-
demic species subset of all birds and Passeriformes only, indicating 
that colonization is only part of the story and that in situ adaptation 
also contributes to convergence.

Significant convergence in each of body plan, body mass and 
phylogeny was also detected in the extant species subset (post-
extinction datasets). In addition, we found that body plan con-
vergence was more pronounced in the sample of extant species 
(SES = −3.415; p = .001) than in the dataset containing extant and 
extinct species sampled together (SES = −2.364; p = .006). This was 

also true for extant and extinct species (SES = −3.277; p = .001) but 
was less pronounced for Passeriformes (extant species SES = −3.337; 
p =  .001; and extant and extinct species, SES = −3.291; p =  .001). 
These findings suggest that community convergence existed before 
human influences on island faunas and that convergence has been 
strengthened further by anthropogenic extinctions.

4  |  DISCUSSION

Our results reveal clear evidence of convergence in both the phy-
logenetic structure and the morphology of archipelagic avifaunas, 
despite their assembly from distinct mainland source pools. The 
pattern of convergence was particularly strong for phylogenetic 
structure, suggesting that archipelagic assemblages are drawn from 
a non-random set of clades predisposed to over-sea dispersal and/or 
successful establishment in insular environments. The concordance 

F I G U R E  3  Convergent properties in morphological and phylogenetic structure of archipelagic avifaunas. The networks show 
convergence properties in body plan, body mass and phylogeny for: (a–c) all land birds; and (d–f) Passeriformes only. Nodes correspond to 
the 18 and 15 major oceanic archipelagos for all land birds and Passeriformes, respectively. Red and grey connectors depict convergence 
and non-convergence, respectively. Convergence was estimated by comparing pairwise morphological and phylogenetic turnover between 
pairs of archipelagos against the distribution of values calculated from 1,000 simulations using a null model with random morphological and 
phylogenetic differentiation. A pair of archipelagos was considered convergent when the observed dissimilarity was below the lower bound 
of the 95% confidence limits of the null model distribution. Colours indicate the biogeographical region to which each archipelago belongs 
(for regions and archipelago names, see legend to Figure 2; Supporting Information Tables S1–S3)
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of evidence from phylogeny and key aspects of phenotype can be 
assigned to the fact that, in general, morphology is phylogeneti-
cally conserved in birds and also reflects dispersal propensity (e.g., 
Barnagaud et al., 2014; Jønsson et al., 2015; Ricklefs, 2012; Sheard 
et al., 2020; Tobias et al., 2020; Supporting Information Table S4).

Support for community convergence is strengthened further 
by two observations from our analyses. First, the composition 
and number of families observed in each archipelago are con-
sistently different from the adjacent mainland avifauna (see also 
Whittaker & Fernández-Palacios, 2007: 50–53). Second, the as-
semblages of the majority of volcanic archipelagos analysed here 
are dominated by two particular clades (pigeons and passerines), 
which make up a larger proportion of the archipelago land-bird 
community than predicted as a random draw based on respec-
tive continental source pools. The unusual diversity of pigeons 
on remote islands was noted long ago by Wallace (1876) and high-
lights the role of clade-specific traits in the assembly of island 
fauna (Emerson & Gillespie, 2008; Warren et al., 2015; Weigelt 
et al.,  2015; Whittaker & Fernández-Palacios,  2007). Taken to-
gether, these aspects of convergent community structure suggest 
that dispersal and environmental filters strongly constrain which 
types of species can reach and thrive on oceanic archipelagos 
(Figure 1).

Community convergence is clearly promoted by deterministic 
colonization and establishment in faunal build-up, but this effect 
might be augmented by in situ adaptation and diversification, be-
cause the colonization of islands by avian lineages is often followed 
by predictable evolutionary change (e.g., Grant & Grant, 2008; Losos 
& Ricklefs, 2009; Warren et al., 2015). For example, island-dwelling 
species tend to become less mobile, resulting in a loss or reduction 
of flight ability (Wright et al., 2016), whereas brain size tends to in-
crease (Sayol et al., 2018). Likewise, beak size can evolve to increase 
or decrease after species colonize islands, depending on niche avail-
ability (e.g., Clegg & Owens, 2002; Grant & Grant, 2008). Although 
this process can lead to in situ morphological divergence when a lin-
eage diversifies during archipelagic radiation, the resultant commu-
nities can, nonetheless, be convergent if the same sets of niches are 
filled repeatedly across different archipelagos.

Results from analyses based on endemic and non-endemic 
species separately confirm the general pattern of convergence, 
with both subsets being structurally more similar than expected 
by chance. Assuming that non-endemic species are generally more 
recently derived from mainland populations and that endemic spe-
cies reflect insular speciation events, these findings suggest that 
non-random patterns of colonization and in situ adaptation both 
contribute to community convergence. Overall, our analyses show 
consistent evidence for convergent patterns in body plan and phy-
logenetic structure, whereas evidence for body mass convergence, 
albeit significant for all species, was not detected for passerines or 
for archipelagic endemics. There are two potential explanations for 
these findings. First, larger-bodied species might not be able to over-
come the dispersal barrier (Figure 1) and colonize islands. Species 
belonging to Struthionidae (e.g., Struthio camelus), Rheidae (e.g., Rhea 

americana) and Casuariidae (e.g., Casuarius casuarius) are missing 
from island systems, and this might explain, at least in part, the pat-
tern of body mass convergence when focusing on all species (body 
mass of archipelago species ranges from 5.17 to 22,500 g and for 
mainland species from 1.9 to 111,000 g). For passerines, the ranges 
of body mass are very similar between archipelagos and mainland 
areas (Supporting Information Figure S6), hence there is also less 
community convergence between archipelagos with regard to their 
respective species pools. Second, in situ speciation events within 
these groups (Figures 2 and 3) resulted in the presence of several rel-
atively large species, such as the pigeons Raphus cucullatus (12,450 g) 
and Pezophaps solitaria (22,500 g) in the Mascarenes, further diluting 
community convergence.

To examine the potential effect of anthropogenic extinctions 
in driving convergence of community structure, we compiled data 
for pre- and post-human arrival communities, then compared ev-
idence for convergence with and without extinct species. Our 
results show that the pattern of convergence existed before the 
impact of humans and was strengthened subsequently, owing to 
anthropogenic extinctions. This finding suggests that anthropo-
genic extinctions have selectively removed morphologically dis-
tinctive species, including endemic lineages with large body size or 
unusual wing morphology (Boyer & Jetz, 2014; Heinen et al., 2018; 
Hume, 2017; Steadman, 2006), thus accentuating the signal of con-
vergence in extant avifaunas. Therefore, our results highlight the 
risk of testing for convergence without accounting for extinct taxa 
and provide the best evidence to date that patterns of convergence 
precede the effects of anthropogenic extinctions. However, it is 
worth emphasizing that our knowledge of extinct species remains 
incomplete (e.g., Hume, 2017; Sayol et al., 2020; Steadman, 2006), 
with the global number of described extinct species no doubt rep-
resenting only a partial picture of the original avifaunal diversity 
driven to extinction by humans. Focusing on oceanic island systems 
reduces the problem somewhat, because many archipelagos have 
now been relatively well studied by palaeontologists, yet the inad-
equate fossil record of some islands suggests that our dataset of 
extinct taxa might be missing a large number of species that await 
discovery (e.g., Hume, 2017; Sayol et al., 2020; Steadman, 2006). 
Nonetheless, community convergence is evident even without the 
extinct species.

Historical contingencies arising from regional factors and chance 
events have resulted in the assembly of unique biotas on archipela-
gos world-wide, often featuring multiple narrowly endemic species 
(Gillespie & Clague, 2009; Whittaker & Fernández-Palacios, 2007); 
hence, traditional comparisons of species or clade composition 
among oceanic archipelagos are not suitable for assessing conver-
gence at the community level. By focusing on phylogenetic relation-
ships and morphological traits in relationship to distinct regional 
species pools, we have shown that avian community assembly on 
oceanic archipelagos is shaped by non-random, deterministic and 
therefore predictable process regimes over large temporal scales. 
Crucially, we have shown that non-random anthropogenic extinc-
tions contribute to this pattern, but are insufficient to explain its 
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pervasiveness. These findings clarify that historical contingencies 
are overridden by a combination of biogeographical assembly, in situ 
evolutionary adaptation and non-random anthropogenic impacts 
to generate convergent archipelagic bird communities world-wide. 
Similar approaches should be extended to other vertebrate groups, 
plants and invertebrates to assess the generality of our findings 
across a wider sample of biodiversity.
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