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From giant pigeons to dwarf elephants, islands have long been 
known to generate evolutionary oddities1. Understanding the 
processes by which island lineages evolve remains a promi-

nent theme in evolutionary biology, not least because they include 
many of the world’s most bizarre and highly threatened organisms2. 
The classic insular pattern of both small-animal gigantism and 
large-animal dwarfism in relation to mainland relatives has been 
described as a macroevolutionary or biogeographical rule—the 
‘island rule’3–5 (Fig. 1). However, previous research has cast doubt 
on the generality of this pattern6, suggesting that body size shifts 
are asymmetrical, with reduced size in some clades (for example, 
carnivores, heteromyid rodents and artiodactyls) or increased size 
in others (for example, murid rodents)7,8. Even in these cases, the 
underlying mechanisms driving patterns of insular gigantism and 
dwarfism remain unclear.

Several mechanisms have been proposed to explain the island 
rule, including reduced predation, relaxed competition and resource 
limitation in island environments9. In theory, each of these factors 
may be accentuated in smaller, more isolated islands, where lower 
levels of interspecific competition and predation could lead to ‘eco-
logical release’, allowing small‐bodied species to increase in body 
size5,9. Conversely, among large‐bodied species, limited resource 
availability could select for smaller body sizes with reduced energy 
requirements, leading to insular dwarfism. Climatic conditions 
may also influence body size evolution on islands because pri-
mary productivity and associated resource availability are strongly 
influenced by climate9,10. Although previous studies of body size 
evolution on islands have tested the effects of these different mecha-
nisms, many have focused on relatively restricted geographic and 
taxonomic scales and did not directly address the island rule in 
its broad sense across multiple species within a taxon10–13, with  
notable exceptions9,14–16.

Most work on the island rule has been restricted to mammals 
(for example, refs. 4,7,14,17), although the hypothesis has also been 
tested in amphibians18, reptiles19–21, birds15,22, fish23, insects24, mol-
luscs25 and plants26. The highly inconsistent results of these studies 
(for example, refs. 5,6,27) are perhaps unsurprising because they typi-
cally deal with single species or pool together data on different traits 
from numerous sources without controlling for variation in study 
design or accounting for sampling variance. Accordingly, a recent 
systematic review based on a simplified scoring system27 concluded 
that empirical support for the island rule is not only potentially 
biased but also generally low, particularly for non-mammalian taxa. 
However, scoring approaches provide only limited information, as 
they do not account for heterogeneity between studies, taxonomic 
representativeness, sample size or precision in the estimates.

These limitations are best addressed with formal 
meta-analyses28,29, hence we tested the island rule hypothesis by 
applying phylogenetic meta-regressions to a global dataset of 2,479 
island–mainland comparisons for 1,166 insular and 886 mainland 
species of terrestrial vertebrates (Fig. 2 and Supplementary Dataset 
1—GitHub link provided in Supplementary Information). Our ana-
lytical framework allows us to control for multiple types of varia-
tion, including data source, sample size imbalance, intraspecific 
and intrapopulation variability, and phylogenetic relatedness (see 
Methods). For each island–mainland comparison, we calculated 
the log response ratio (lnRR) as the natural logarithm of the ratio 
between the mean body size of individuals from an insular popula-
tion Mi and that of mainland relatives Mm (lnRR = log(Mi/Mm))30. 
Then, we regressed lnRR against the body mass of the mainland 
population (Mm; Fig. 1).

This framework provides a clear set of predictions in the con-
text of evolutionary trajectories on islands4,6,14. Specifically, as nega-
tive values of lnRR indicate dwarfism and positive values indicate 
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gigantism, a positive intercept and negative slope of the lnRR–main-
land mass relationship supports the island rule (Fig. 1). Given the 
contentiousness of the generality in the island rule, we assessed the 
robustness of our results against potential biases derived of regress-
ing ratios31,32, using small samples, imputing missing data or the 
influence of using data from the island rule literature or derived 
from other studies focused on unrelated questions (that is, publi-
cation bias; see Methods). Finally, we use our framework to assess 
how body size shifts are related to island size, island isolation, island 
productivity and climate, as well as species diet. The extent to which 
these different factors explain insular body size shifts allows us to 
re-evaluate a range of hypotheses for the mechanisms underlying 
‘island rule’ effects on body size, including ecological release9, immi-
grant selection9, resource limitation9,33,34, thermoregulation9,15,35, 
water availability36,37 and starvation resistance9,33 (Supplementary 
Table 1 and Extended Data Fig. 1).

results
The generality of the island rule. We found that lnRR and main-
land body mass were negatively related for mammals, birds and 
reptiles, with small species tending to gigantism and large species 
to dwarfism (Fig. 3). The relationship was weakly negative but sta-
tistically non-significant for amphibians, with a tendency towards 
gigantism across all body sizes (Fig. 3 and Table 1). We obtained 
similar results using size ratios corrected for small sample size 

(lnRRΔ), or by regressing island mass against mainland mass, with 
support for the island rule across all groups except for amphibians 
(Supplementary Tables 3 and 4). This indicates that our analyses are 
robust to small sample size bias38 or any potential spurious correla-
tion associated to ratio regression models31,32 (Extended Data Fig. 
2). Further, neither imputation nor publication bias influenced our 
results (Supplementary Tables 5 and 6), with no apparent differ-
ences between island–mainland comparisons sampled from studies 
formally testing the island rule or compiled from unrelated datasets.

Mainland body mass explained 11.4, 7.0 and 17.6% of the vari-
ance in mammals, birds and reptiles, respectively. The amount of 
further variance accounted for by phylogeny (0.0–29.8%), data 
source (1.8–25.1%), and species (25.9–53.2%) fluctuated widely 
among taxa (Extended Data Fig. 3). Phylogeny accounted for a rela-
tively large amount of variance in mammals (20.1%) and reptiles 
(29.8%), but even in these cases the overall patterns were not driven 
by large effects in particular clades. Some groups tended towards 
gigantism and others towards dwarfism, while others contained 
both dwarfs or giants depending on body size (for example, Primata, 
Rodentia and Carnivora in mammals, and Viperidae, Scincidae and 
Iguanidae in reptiles; Extended Data Fig. 4).

Ecological mechanisms underlying body size evolution on 
islands. The pattern of body size evolution in our island–main-
land comparisons provides some insight into the likely mechanisms  
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Fig. 1 | conceptual figure showing body size evolution in island populations. According to the island rule, changes in body size of island populations 
are dependent on the body mass of mainland relatives, with small species tending to increase in size on islands (gigantism) and large species tending 
to decrease in size (dwarfism). By plotting the log response ratio (lnRR) between insular mass and mainland mass, against mainland mass, we can test 
if insular populations adhere to the rule (intercept >0 and slope <0; blue line). Mechanisms proposed to drive ‘island rule’ effects are mainly based on 
reduced predation, inter- and intraspecific competition, and food availability, suggesting that the relationship will steepen in small, remote islands (red 
line). Silhouettes extracted from ‘phylopic’ (www.phylopic.org).
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Fig. 2 | Location of island populations included in our analyses for mammals, birds, reptiles and amphibians. Mammals (N = 1,058) are shown in blue, 
birds (N = 695) in orange, reptiles (N = 547) in yellow and amphibians (N = 179) in green. The size of each point indicates the number of species sampled 
on each island; some points overlap. See Supplementary Fig. 1 for a four-panel figure with the location of insular populations separated for each taxonomic 
group. ArcMap 10.5. was used to create the map. Silhouettes extracted from ‘phylopic’ (www.phylopic.org).
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driving ‘island rule’ effects (Extended Data Figs. 5–8, Supplementary 
Table 7 and Supplementary Dataset 2—GitHub link provided 
in Supplementary Information). Overall, insular size shifts arise 
through some combination of ecological release from predation and 
competition, resource limitation, biased colonization (that is, immi-
grant selection) and starvation resistance. The fact that no single 
factor explained island effects on body size is not surprising because 
some hypotheses shared overlapping predictions, making them dif-
ficult to disentangle.

Shifts in body mass of mammals were mostly explained by 
island size and spatial isolation (Omnibus test for moderators 
(QM) = 12.20, P = 0.002; Fig. 4a), resulting in more pronounced 
gigantism or dwarfism in small and remote islands. Birds showed 
similar size shifts in relation to spatial isolation and island area, but 
these were not statistically significant (Supplementary Table 7). In 
both mammals and birds, temperature had similar effects across 
the size range, with body size consistently larger in cool islands and 
smaller in warm islands (Extended Data Figs. 5e and 6e). Hence, in 
these groups, even large species that had undergone dwarfism were 
significantly larger in cool insular environments than in warm ones. 
Contrary to the starvation resistance hypothesis, small-sized birds 
did not become larger in highly seasonal islands, but large-sized 

birds had reduced dwarfism on islands with high seasonality in tem-
peratures (QM = 12.33, P < 0.001; Extended Data Fig. 6).

In reptiles, the combination of island area and spatial isolation 
were the most important factors explaining variation in body size 
(Fig. 4c), with productivity and seasonality also supported but 
with weaker effects (Extended Data Fig. 7). Similar to mammals, 
the tendency towards dwarfism or gigantism in large-bodied or 
small-bodied reptiles was more apparent in isolated small-sized 
islands, with stronger effects of area than isolation (Supplementary 
Table 7). The effects of productivity and seasonality were only par-
tially in line with predictions, as small-sized species were larger on 
islands with high seasonality, but smaller on islands with high pro-
ductivity (Extended Data Fig. 7). In turn, large-bodied reptiles were 
smaller on islands with low productivity and high seasonality.

Finally, the relationship between size ratio and mainland mass 
in amphibians was slightly steeper in small and remote islands 
(Fig. 4d), with island area being marginally more important than 
spatial isolation (Extended Data Fig. 8). The effect of seasonality 
was clearer, with amphibian species inhabiting islands with high 
seasonality (unpredictable environments) tending towards gigan-
tism, whereas those from islands with low seasonality (predict-
able environments) being similar in size to mainland counterparts 
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Fig. 3 | ‘island rule’ effects in terrestrial vertebrates. a–d, Relationship between lnRR (log response ratio between island mass and mainland body mass) 
and body mass in the mainland for mammals (N = 1,058; a), birds (N = 695; b), reptiles (N = 547; c) and amphibians (N = 179; d). Models were fitted 
using phylogenetic multi‐level meta-regression models with mainland body mass as moderator, and observation-level ID, source ID, species ID and 
phylogeny as random effects. lnRR >0 indicates gigantism, lnRR <0 indicates dwarfism and lnRR = 0 indicates stasis (no shift in body size from mainland 
to island populations). The size of points represents the inverse of the sampling variance for each paired island–mainland response ratio in the model. 
Shaded areas represent 95% confidence intervals. Note that y axes have different scales. Silhouettes extracted from ‘phylopic’ (www.phylopic.org).
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(Extended Data Fig. 8). We found no effects of diet for any of the 
four taxa, or precipitation for amphibians, contrary to the water  
availability hypothesis.

Discussion
Based on comprehensive morphometric data from a worldwide 
sample of island fauna, we show consistent patterns of body size 
evolution across terrestrial vertebrates in accordance with predic-
tions of the island rule. This finding was robust to alternative mod-
elling approaches (island mass versus mainland mass regressions), 
small sample bias, data imputation and publication bias. Moreover, 
we have demonstrated that insular size shifts are contextual and 
depend not only on the body size of mainland relatives (island rule 
sensu stricto) but also on the physiographic and climatic character-
istics of particular island environments9.

Repeated evolutionary trajectories on islands. We found a clear 
negative relationship between insular body size variation and the 
body mass of mainland individuals in mammals, birds and reptiles. 
Mainland body mass explains between 7.0 and 17.6% of the varia-
tion in insular size divergence in these three taxonomic groups, 
which is similar to that reported in smaller-scale studies of bats 
(15%), birds (13%), snakes (42%), non-volant and terrestrial mam-
mals (11–21%) and turtles (8%)5,14,15,39,40. Contrary to these earlier 
studies, our analyses are corrected not only for phylogenetic relat-
edness, but also for variability between species and intrapopula-
tion variability, thereby strengthening the evidence for predictable 
evolutionary trajectories on islands. Nevertheless, the island rule 
provides only a partial explanation for these trajectories because 
substantial variation around the trend line remains unexplained. 
We also conducted the first multispecies test of island rule effects 
in amphibians, showing that the relationship goes in the expected 
direction but with a weak effect (1.4%), possibly because the body 
mass range in amphibians is narrower and limited to small sizes 
(~0.5–50 g) and thus most amphibians tend to gigantism on islands 
with reduced predation risk.

Our findings are in contrast with a number of studies rejecting 
the island rule, including a recent review of evidence from across 
mammals, birds and reptiles27, as well as other taxon-specific studies 
focused on lizards20,41 and turtles21. On the other hand, the patterns 
we detect are consistent with analyses supporting the island rule in 
snakes19, mammals4,9 and birds5,15 We conclude that the contradic-
tory results of previous studies may have been related to sampling 
bias, heterogeneity between sources and species, and phylogenetic 
relatedness (that is, statistical non-independence). By accounting 
for these effects in our global models we are able to demonstrate 
that vertebrate animals evolve in largely consistent ways on islands. 
Further, we have shown that the island rule is not clade-specific and 
instead applies to numerous clades within major taxonomic groups, 
particularly in mammals and birds.

A corollary that emerges from the island rule is that body size 
converges on islands. Specifically, if insular environments select for 
intermediate body sizes, closer to the optimal size of the focal clade, 
then the size spectrum of organisms found on islands should be nar-
rower compared with the mainland42,43. Theoretically, the optimal 
body size towards which small and large species may converge in 
low-diversity systems such as islands should correspond to the point 
where the trend intersects the horizontal dashed line in the relation-
ship between size ratio and mainland mass, at which point fitness is 
maximized42 (but see ref. 44). Interestingly, the shift between dwarfism 
and gigantism in our models occurred at approximately 100–250 g in 
endotherms, slightly larger than the 100 g adult body mass proposed 
for mammals42 (but see ref. 43), and the mode of the global body size 
distribution of birds that separate between small- and large-bodied 
species (60 g)22,45,46. Additionally, our analyses suggest that the opti-
mal body size for island reptiles should be ~20 g, which is marginally 

higher than the modal body size of lepidosaurs (14.1 g)47. Whether 
there is an optimal body size in island biotas has been the subject 
of much debate44, but overall we expect that phenotypic variability 
in morphometric traits will be substantially narrowed if directional 
selection is operating in island assemblages, a feature that warrants 
further investigation. Additionally, optimal phenotypes should vary 
with the environmental characteristics of islands, in particular their 
area and isolation, climate, productivity and seasonality. For exam-
ple, in mammals, our results suggest that the optimal body size would 
be ~100 g and ~900 g in warm and cold islands, respectively.

Ecological mechanisms influencing body size variation. Because 
body size is intimately linked to many physiological and ecologi-
cal characteristics of vertebrates, it may be associated with a vari-
ety of environmental factors. As a consequence, the body size of 
colonizing species may predictably evolve as the result of selective 
pressures associated with insular environments (for example, low 
food resources, few competitors, no predators) and others that act 
across larger geographic scales (for example, climate). For mam-
mals and reptiles, our results suggest that insular body size shifts 
are indeed governed by spatial isolation and island size, with indi-
viduals becoming dwarfs or giants in remote islands of limited 
size. Furthermore, the slope of the relationship between size ratio 
and mainland mass was slightly steeper for birds and amphibians 
in small remote islands than in large islands near continental land 
masses (Fig. 4). This points to a combination of resource limitation 
(with small islands having fewer resources to maintain large-sized 
organisms48,49) along with release from interspecific competition 
and predation pressure in small, species-poor islands. The pattern is 
also consistent with biased colonization favouring larger individuals 
with higher dispersal abilities (immigration selection50). Conversely, 
our results showed that body size divergence on islands close to 
the mainland was minimal, reflecting two non-mutually exclusive 
processes. First, many of these islands have been connected to the 
continent by land bridges so recently that phenotypic differences 
have not had time to accumulate. Second, regular dispersal between 
mainland and island populations promotes gene flow, with intro-
gression counteracting divergent selection51,52.

Besides island physiography (area and isolation), other relevant 
factors were temperature conditions in endotherms and resource 
availability and seasonality in ectothermic organisms. Mammals 

Table 1 | Parameter estimates for the phylogenetic 
meta-regression models testing the generality of the island rule 
in terrestrial vertebrates

class k intercept 
(ci)

Slope (ci) QM  
(P value)

R2
m R2

c

Mammals 1,058 0.208 
(0.052, 
0.365)

−0.088 
(−0.122, 
−0.055)

27.30 
(P < 0.001)

11.4 67.8

Birds 695 0.216 
(0.117, 
0.315)

−0.104 
(−0.145, 
−0.064)

25.40 
(P < 0.001)

7.0 50.4

Reptiles 547 0.410 
(0.006, 
0.814)

−0.305 
(−0.419, 
−0.190)

27.21 
(P < 0.001)

17.6 84.2

Amphibians 179 0.195 
(0.012, 
0.377)

−0.107 
(−0.320, 
0.107)

0.96 
(P = 0.328)

1.4 68.5

k, number of island–mainland comparisons (lnRR); CI, confidence interval; QM, test of moderators 
(log10(mainland mass)); R2

m, marginal R2, estimated percentage of heterogeneity explained by the 
moderator (fixed effects); R2

c, conditional R2, percentage of heterogeneity attributable to fixed and 
random effects.
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and birds both responded to island temperature in line with the 
heat conservation hypothesis, with small- and large-sized species 
exhibiting exacerbated gigantism and diminished dwarfism, pre-
sumably to conserve heat in colder, harsher insular environments. 
Additionally, temperature seasonality was an important determi-
nant of the size of large-bodied birds, with populations on highly 
seasonal islands being similar in size to mainland populations. One 
possibility is that larger size in these cases may help maintain energy 
reserves during periods of low food availability, allowing them to 
thrive in otherwise hostile environments. Another possibility is that 
bird populations on highly seasonal islands—which tend to be situ-
ated at relatively high latitudes—are more often seasonally mobile 
or even migratory, potentially increasing gene flow with mainland 
populations or weakening adaptation to the local environment53. 
These findings add new insights to previous results regarding the 
role of thermal and feeding ecology on morphological divergence 
in island birds54,55. Traditionally, changes in feeding ecology were 
thought to be the prime force in driving morphological divergence 
in island birds54,55. Yet, our results imply that physiological mecha-
nisms related to heat conservation (‘thermoregulation hypothesis’) 
and energy constraints (‘starvation resistance hypothesis’) may also 
shape body size evolution in island birds.

In reptiles, we find some evidence that resource availability and 
seasonality are important factors explaining body size evolution, 

with some deviations from the patterns predicted. As hypothesized, 
large species are much smaller on islands with low resource avail-
ability, and small species are larger on islands with high seasonal-
ity. Yet, unexpectedly, small species are larger on islands with low 
productivity, perhaps because increased intraspecific competition 
favours large individuals under the high population densities that 
reptiles often attain on islands56,57.

Overall, most amphibians tended to gigantism, presumably as a 
result of increased growth rate or lower mortality due to reduced 
predation pressure on islands58. Additionally, we found that body 
size of amphibians consistently increased on islands where resources 
were highly seasonal and unpredictable, perhaps to maximize energy 
reserves and withstand long periods without food, for example dur-
ing aestivation or hibernation59. We did not find a clear relationship 
between precipitation and body size, suggesting that water availabil-
ity is not a key factor. It seems that gigantism in island amphibians is 
mostly driven by physiological mechanisms that maximize growth 
rate, particularly in smaller, more isolated islands. These findings 
should be further explored when more data on island–mainland 
pairwise populations of amphibians become available.

Body size evolution in extinct species. Our analyses focused on 
extant species for which we could gather information on the varia-
tion around the morphometric estimates, along with sample size 
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Fig. 4 | The effect of island area and spatial isolation on insular size shifts in terrestrial vertebrates. a–d, The lnRR–mainland mass relationships for small 
and remote islands, and for close and large islands are shown for mammals (N = 1,058; a), birds (N = 695; b), reptiles (N = 547; c) and amphibians (N 
= 179; d). Continuous variables are represented at the 10% and 90% quantile for each extreme (close versus remote islands; small versus large islands). 
lnRR >0 indicates gigantism, lnRR <0 indicates dwarfism and lnRR = 0 indicates stasis (no shift in body size from mainland to island populations). Shaded 
areas represent 95% confidence intervals. Silhouettes extracted from ‘phylopic’ (www.phylopic.org).
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(essential for meta-analyses). The widespread extinction of large 
species on islands, including dwarf morphotypes of large spe-
cies such as insular elephants in Sicily and the Aegean islands60,61, 
may have masked the historical pattern of phenotypic variation on 
islands62. Giant insular birds54,63, primates64,65 and lizards66, along 
with large insular turtle species, went extinct during the Holocene 
and late Pleistocene67, most likely because of overhunting and the 
introduction of invasive species68,69. Overall, it is estimated that 
human colonization of oceanic islands was followed by the extinc-
tion of 27% of insular endemic mammals70, as well as over 2,000 bird 
species in the Pacific region alone71, with these losses biased towards 
large-bodied, flightless, ground‐nesting species68. Extinct species 
may shed new light on size evolution in insular vertebrates because 
species extinctions have substantially altered the biogeography of 
body size in island faunas, potentially leading to downsized insular 
communities72,73. For example, the predominance in our dataset of 
smaller-bodied organisms could reflect the extinction of large spe-
cies on islands68, or simply the fact that few islands support large 
species. Either way, further studies should include data from extinct 
species as this may alter or strengthen the signal that we report for 
extant species39.

We foresee that, under global change, the extinction of insular 
species and the introduction of novel (invasive) species may trig-
ger new equilibria, with concomitant shifts in the composition of 
insular communities and the opening of new niches to which spe-
cies may respond via genetic adaptations and phenotypic plasticity. 
Recent evidence indicates that even introduced species on islands, 
which were not included in our analysis, predictably evolve towards 
dwarfism or gigantism74–76. In theory, as the Anthropocene gathers 
pace, further extinctions will drive a decline in mean body size of 
the overall island community, pushing optimal body sizes towards 
the lower end of body size ranges in the different vertebrate groups.

conclusions
Of the many evolutionary implications of living on islands—together 
known as the ‘island syndrome’2—the effects on body size are the 
most widely known and controversial. We have shown that these 
‘island rule’ effects are widespread in vertebrate animals, although 
the evidence for amphibians is inconclusive. Morphological changes 
were directional for species at the extremes of the body size range in 
mammals, birds and reptiles, following the predicted pattern of con-
vergence towards intermediate ‘optimum’ body sizes, in line with 
optimal body size theory42,43,45. Although this convergence towards 
morphological optima may result from natural selection or phe-
notypic plasticity, the exact mechanism producing these changes 
on islands is still not well understood. Nonetheless, we found that 
consistent transitions towards intermediate body sizes were associ-
ated with a combination of factors, indicating a range of different 
ecological mechanisms. Our results highlight the contextual nature 
of insular size shifts, where island physiographic, climatic and eco-
logical characteristics play a fundamental role in shaping body size 
evolution, reinforcing the idea that large-scale macroevolutionary 
patterns do not arise from single mechanisms but are often the 
result of multiple processes acting together77,78.

Methods
Data collection. We collected baseline morphometric data from articles included 
in a recent assessment of the island rule27, as well as other compilations assembled 
to test the hypothesis in reptiles20, mammals6 and birds15. To expand this sample, 
we then performed a literature search (February 2020) in the Web of Science Core 
Collection using the following search string: (‘island rule’ OR ‘island effect’ OR 
‘island syndrome’ OR island*) AND (gigantism OR dwarfism OR ‘body size’ OR 
weight OR SVL OR snout-vent length OR length OR size) AND (mammal* OR 
bird* OR avian OR amphibia* OR reptile*) (Appendix 1). Because this search was 
complementary to the data we had gathered from previous compilations6,15,20,27, we 
downloaded only the first 500 hits out of a total of 33,431 hits ordered by relevance, 
and removed duplicates already included in our dataset. We reviewed every island–
mainland comparison reported in published studies and traced primary source 

data when possible to extract original measurements. We also extracted data from 
all studies containing morphometric measurements for insular populations when 
these could be matched with equivalent data published elsewhere for relevant 
mainland taxa. We excluded problematic data, such as comparisons that were not 
supported by taxonomic or phylogenetic evidence, or that reported morphometric 
data restricted to single specimens or without sample size. In addition, we excluded 
comparisons based on extinct taxa as they are often known from very few or 
incomplete specimens (Supplementary Dataset 3—GitHub link provided in 
Supplementary Information).

It has been argued that research on the island rule might be prone to 
ascertainment bias, where researchers are more likely to notice and measure 
animals of extreme body size when conducting research on islands41. To help 
overcome this problem, we collected body size data not only from studies testing 
the island rule, or reporting dwarfism and gigantism in island fauna, but also 
from studies that did not specifically test hypotheses related to the island rule. 
We matched unpaired insular populations with independent data from mainland 
populations by performing species-specific searches in the Web of Science Core 
Collection and Google Scholar. We also compiled morphometric data for 442 
insular and 407 mainland bird species from an independent global dataset of avian 
functional traits79.

Large islands may be more ‘mainland like’ in relation to factors that are thought 
to affect body size (that is, competition, resource availability and predation5). Thus, 
when major islands were at least ten times larger than a nearby island, we treated 
the large island as the mainland comparison, following previous studies testing 
the island rule4,5,20. Consequently, a single mid-sized island can simultaneously 
be treated as the continent in comparisons with smaller islands, and the island in 
comparisons with larger continents. When authors reported data referring to an 
entire archipelago instead of a specific island (3.2% of cases), we used the size of 
the largest island as island area. Removing these cases from our analyses did not 
qualitatively affect our results (Supplementary Table 8).

Our final dataset contained 529 data sources and 2,479 island–mainland 
comparisons7,10,17,36,58,79–601. In total, we collated morphometric measurements 
for 63,561 insular and 154,875 mainland specimens representing mammals 
(1,058 island–mainland comparisons), birds (695 comparisons), reptiles (547 
comparisons) and amphibians (179 comparisons) from across the globe (Fig. 
2). A total of 2,068 island–mainland comparisons (83.4%) were within-species 
(for example, subspecies) comparisons and 411 (16.6%) were between-species 
comparisons. Insular populations were sampled from an array of islands varying 
widely in size (0.0009–785,753 km2), climate and level of spatial isolation 
(0.03–3,835 km from mainland). To explore the drivers of body size shifts in 
insular populations, we also sampled species with a wide range of average body 
masses (0.18–234,335 g). We collated data on body size indices (body mass, body 
length, cranial and dental measurements) of different taxa in island and mainland 
populations following strict morphological, phylogenetic and biogeographic 
criteria. Specifically, we always compared the same body size index for island 
and mainland populations. For within-species comparisons, we compared island 
and mainland populations based on the information given by the authors of the 
relevant study (for example, taking note of which mainland source populations 
are likely to inhabit a particular island because of colonization history or isolation 
via rising sea levels89,101,240,385,547). When we matched comparisons independently, 
we used information published in the study reporting the insular form, selecting 
the geographically closest mainland population whenever possible. In addition, 
we prioritized latitudinal alignment of mainland and island populations to avoid 
confounding effects of latitudinal variation in body size. In the case of island 
endemics, we compared island populations with their closest mainland relative 
whenever these were identifiable by phylogenetic data or other information 
reported in each particular study. This usually meant selecting their sister 
species or the geographically closest representative of a sister clade or polytomy 
(Supplementary Dataset 1—GitHub link provided in Supplementary Information). 
If we could not reliably establish the closest mainland relative, we discarded 
the data (Supplementary Dataset 3—GitHub link provided in Supplementary 
Information).

When more than one body size index was reported in published studies, we 
prioritized those indices related most closely to body mass (Supplementary Table 
2). For mammals, we selected indices in the following order of preference: body 
mass, body length, cranial length (greatest skull length or condylobasal length) 
and dentition (for example, canine length)5. For birds, preferred indices were 
body mass, wing length, tarsus length and bill length. Finally, for amphibians 
and reptiles, size was reported as body mass, snout–vent length, carapace length 
(for turtles) and total length (including snout–vent length and tail length). In all 
cases, we included measurements only for adults. To avoid size biases attributable 
to sexual size dimorphism, we calculated the pooled mean for both sexes and the 
combined standard deviation using standard formulae for combining groups602. 
When information was available for only one sex (male or female), we restricted 
our size comparisons to the sex for which we had morphometric data in both 
mainland and island populations. Data from zoos or studies that could not be 
georeferenced were discarded.

To overcome the problem that different authors report size using different 
indices, we used allometric relationships to convert island and mainland size to 
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body mass equivalents, thereby enabling cross-taxa and cross-study comparisons. 
Although this conversion is imprecise, morphological indices and body mass 
are nonetheless highly correlated across the global scale and wide range of body 
sizes within our samples (providing more accurate predictions than simply 
assuming an exponent ~3, as in previous studies testing the island rule5,9). We 
used published allometric relationships where available (Supplementary Table 
2), or derived them based on published datasets47,179,603–608 and other data sources 
(Supplementary Dataset 4—GitHub link provided in Supplementary Information). 
To calculate allometric relationships, we used ordinary least square models of the 
log10-transformed body mass against the log10-transformed body size index (for 
example, condylobasal length; Supplementary Table 2 and Dataset 4).

For birds, we complemented published data with standardized morphometric 
measurements from 3,618 museum specimens and live individuals of 436 insular 
and 404 mainland bird species (see ref. 79). We used wing length in the main 
analyses instead of tarsus length because the former is a better predictor of body 
mass in our dataset (R2

wing = 0.89 versus R2
tarsus = 0.69; Supplementary Table 2; 

see also ref. 609). Although wing length may change during moult or thereafter 
because of wear, these effects are negligible in relation to interspecific differences79, 
and minimized by calculating averages across multiple individuals. Further, 
interobserver differences between measurements may explain some variation in 
wing length estimates, but again this bias was shown to have negligible effects in 
our dataset by comparing repeated measures from different observers (see ref. 79). 
To assess the consistency in our results, we repeated analyses using tarsus length, 
another popular proxy of overall body size in birds610. Our results were unchanged 
(Supplementary Fig. 2).

To select suitable comparisons for museum specimens, we first classified 
species as either insular or continental by overlapping International Union for 
Conservation of Nature range polygons with a geographic information system land 
layer including continental land masses. For each insular species we then identified 
continental sister species from avian phylogenies611, using the method described 
above. We excluded bird species that are highly pelagic or aerial (for example, 
swifts) and fully migratory species, because in these groups it is unclear whether 
insular and mainland forms experience different environments15. Further, we also 
excluded flightless bird species, because morphological changes may be owing to 
flightlessness rather than island dwelling per se15.

We calculated the response ratio (lnRR; equation (1)) as effect size in our 
meta-regressions, where we divided the mean body mass of individuals from an 
insular population, M̄i, by that of the nearest mainland relative, M̄m, and then 
applied the natural logarithm. Unlike unlogged ratios, the sampling distribution of 
lnRR is normal, particularly for small samples30, and thus less prone to statistical 
artefacts associated with ratio-based regressions.

lnRR = ln
(

M̄i

M̄m

)

(1)

Response ratios >0 indicate a shift towards larger sizes (gigantism) whereas 
ratios <0 indicate shifts towards smaller sizes (dwarfism). Besides mean 
measurements, we recorded measures of variation, that is, standard deviation, 
standard error or coefficient of variation, and sample sizes of the body size indices 
in island and mainland organisms. Standard deviation and sample sizes were used 
to calculate sampling variances (equation (2)), which were then used to weight 
each response ratio (coupled with the amount of heterogeneity, that is, the variance 
in the underlying effects)30.

σ̂
2
(lnRR) =

SD2
i

NiM̄2
i
+

SD2
m

NmM̄2
m
; (2)

where SDi and SDm are the standard deviation of the mean body size in the insular 
and the mainland population, respectively, and Ni and Nm the sample sizes. 
Standard deviations (SD) were extracted from raw data when possible. If ranges 
were provided instead of standard deviation (or standard error or coefficient of 
variation), we calculated standard deviation following ref. 612. If neither ranges 
nor measures of variation were reported, but the reported sample size was >1, we 
imputed standard deviation based on the coefficient of variation from all complete 
cases (‘Bracken approach’613). Imputation was done for 22% of all cases in mammals, 
1.1% in birds, 11% in reptiles and 7.3% in amphibians, all within the upper limit of 
imputations (<30% of all cases per group) advised in previous studies90.

For each study and island–mainland comparison, we compiled the mainland 
and island names, the study reference, the body size index used, the geographic 
coordinates, the distance to the closest mainland (spatial isolation, in kilometres) 
and the island area (in square kilometres). We completed missing data on island 
characteristics using the United Nations Environment Programme island database 
(http://islands.unep.ch/) and the Threatened Island Biodiversity Database (http://tib.
islandconservation.org/). Missing information was calculated using Google Earth. 
Additionally, we extracted the normalized difference vegetation index (NDVI) 
as a proxy for resource availability on islands614. We also calculated the standard 
deviation of the NDVI to assess seasonality in leaf or vegetation cover, as an index 
of seasonality in available resources. The NDVI was downloaded from the NASA 
Ames Ecological Forecasting Lab (https://lpdaacsvc.cr.usgs.gov/appeears/task/area).

As climate influences both resource requirements and primary productivity, 
body size evolution should also be influenced by climatic conditions on islands. 
We thus extracted island climatic conditions from WorldClim version 2.0 
(http://worldclim.org615). Specifically, we used variables that are more closely 
associated with the proposed underlying mechanisms of Bergmann’s rule (that is, 
thermoregulation and starvation resistance): mean annual temperature, annual 
precipitation, and seasonality of temperature and precipitation616. We assumed 
that the time period for these bioclimatic variables (1970–2000), although not 
necessarily matching the actual time period of body size evolution in the insular 
populations, roughly represents the climatic conditions in the Holocene, a period 
relatively climatically stable where most of our populations became isolated (that 
is, after the Last Glacial Maximum; see also ref. 9). Because climatic variability 
across cells substantially exceeds variation within cells in the Holocene, current 
layers are considered adequate for geographic comparisons. All spatial variables 
were downloaded at 0.1 degree resolution, and we averaged all cells per island to 
obtain a mean value of each environmental variable (for example, temperature, 
NDVI, precipitation and so on). Finally, for each species included in our dataset, 
we collated diet information from EltonTraits for birds and mammals617, and from 
other sources for reptiles607,618, and classified species as carnivores (>50% diet 
consisting of vertebrates) or non-carnivores (<50% diet consisting of vertebrates), 
following previous studies79,619. As all amphibians in our dataset are carnivores620, 
we did not record their diet.

Data analyses. To test the island rule hypothesis, we used phylogenetic 
meta-regressions between lnRR and body mass of mainland relatives, following 
most previous studies of the island rule (for example, refs. 4,5,76,621,622). A negative 
slope for this relationship would support the island rule (Fig. 1).

The use of multiple populations of the same species can overestimate the actual 
number of degrees of freedom, generating type 1 errors. We controlled for this by 
adding ‘Species’ as a random effect intercept in our analyses. Additionally, body 
size evolution in insular vertebrates is heavily influenced by phylogenetic effects, 
with species within entire clades seemingly showing either dwarfism or gigantism6. 
Thus, we accounted for phylogeny by including the phylogenetic relatedness 
correlation matrix as a random effect. The species term captures the similarities 
of effect sizes within the same species, while the phylogenetic term represents the 
similarity due to relatedness623. We also added ‘Source’ as a random effect intercept 
to account for between-source variability and the fact that we had multiple 
response ratios per study. In some cases, ‘Source’ represented the combination 
of two sources of data, one for the island size and one for the mainland size. 
Finally, we included an observation-level random effect, which represents the 
residual variance that needs to be explicitly modelled in a meta-analysis29. Total 
heterogeneity and heterogeneity due to phylogeny, source and species identity were 
computed following ref. 29.

We tested the robustness of our results against several potential limitations. 
As multiple island populations were often compared with a single mainland 
population, we accounted for these repeated measures in a variance–covariance 
matrix where the diagonal includes the sampling variances and the off-diagonals 
of the matrix represent the shared variance (covariance) among the response 
ratios due to the common mainland population624. Further, we compared our main 
results with models fitted with lnRR and sampling variances corrected for small 
sample size38. Another potential problem is that regressions using ratios may lead 
to spurious correlations31,32. Thus, we conducted an additional analysis testing 
the statistical significance of body size trends by regressing island mass against 
mainland mass, following previous studies4,5,20,41. Phylogenetic meta-regressions 
were run using island mass as the response variable and mainland mass as the 
predictor (both transformed with natural log), with random effects as specified 
above, and sampling variance SD2

i /M̄2
i × Ni. This approach has some limitations in 

being harder to visualize and less effective in considering the sampling variance of 
measurements (representing intrapopulation variability), yet nonetheless provides 
an alternative approach for assessing the robustness of our results, in line with 
previous studies4,5,20,41. Finally, we assessed publication bias by testing the influence 
of data source on the relationship between size ratio and mainland mass. This 
involved comparing whether patterns differed in island–mainland pairs extracted 
from studies testing the island rule (38.6% of cases) versus pairs extracted from 
studies not testing the island rule (61.4% of cases).

Testing ecological hypotheses explaining insular size shifts. To evaluate the 
relative roles of key mechanisms proposed to influence body size evolution in 
island fauna, we compiled a further range of variables (Supplementary Table 1 
and Extended Data Fig. 1). These included island area (linked to both resource 
limitation and to ecological release from both predation and competition) and 
spatial isolation (linked to reduced colonization from mainland populations 
for smaller taxa, that is, immigration selection50). In addition, we included 
climatic and resource seasonality, which are linked to the starvation resistance 
hypothesis, and productivity and species diet, each of which are linked to resource 
limitation. Because body size evolution may be influenced by climate (for example, 
Bergmann’s rule)9,621, we also included mean temperature, which is linked to body 
size adaptations for enhancing heat conservation or dissipation (thermoregulation 
hypothesis). For amphibians, we included precipitation as a proxy for water supply 
linked to aquatic habitats, moisture and humidity (water availability hypothesis).
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We modelled interactions between body size and each of the explanatory 
variables because we expected these factors to differentially affect species of 
different sizes, thus producing different effects in small, medium-sized and large 
species. In line with the ecological release and resource limitation hypotheses, 
we expected the slope of the lnRR–mainland mass relationship to be steeper in 
smaller islands, isolated from the mainland and with fewer or no predators (Fig. 
1). Further, if resource availability is a key factor, we also expected large species 
to undergo dwarfism on islands with low productivity48,49, and for dwarfism to be 
accentuated in dietary niches with high energy requirements, including carnivory9. 
In addition, high seasonality in resources and in temperature was expected to 
result in increased gigantism in small-sized species, because energy reserves 
increase faster than energy depletion as body size increases (starvation resistance 
hypothesis)9,625. We hypothesized that smaller species would benefit comparatively 
more by increasing in size than larger species. As amphibians are generally small 
sized, we also fitted a model for this group with only additive terms (mainland 
mass + sdNDVI) where seasonality in resources (sdNDVI) would result in larger 
body sizes for all species. Finally, mechanisms driven by thermoregulation and 
water availability predict that body size shifts are associated with temperature and 
rainfall, respectively. Mean temperature was expected to predominantly affect 
endotherms and small ectotherms with good thermoregulating abilities (reptiles 
and anurans) living on cold islands that, compared with similar-sized species on 
islands with a mild climate, would exhibit more pronounced gigantism to enhance 
heat conservation. We fitted the effect of mean temperature (Tmean) as an interactive 
(mainland mass × Tmean) or additive term (mainland mass + Tmean) to assess 
whether only small species or all species would increase in size in low temperature 
islands (Supplementary Tables 1 and 7, and Extended Data Fig. 1).

Prior to modelling, all the moderators (explanatory variables) were inspected 
and log10 transformed if necessary to meet normality assumptions in model errors. 
We considered a result to be significant when the 95% confidence interval did not 
cross zero. We assessed the explained heterogeneity using QM and the percentage 
of variance explained by the moderators using R2 marginal626. All figures show the 
relationship between size response ratio and body mass, and how this might be 
altered by the mechanisms explained above.

All analyses were performed in R version 3.5.3627 using the packages metafor 
v2.0628 and metagear v0.4629 for the meta-regression models and data imputation, 
metaDigitise v1.0630 for data extraction from plots, ape v5.2631 for estimating branch 
lengths and resolving polytomies, rotl v3.0.4632 for building the phylogenies for our 
species by searching the Open Tree Taxonomy633 and retrieving the phylogenetic 
relationships from the Open Tree of Life634, sf v0.7-3635 and raster v2.7-15636 for 
spatial analyses, dplyr v0.8.0.1637 and reshape2 v1.4.3638 for data manipulation 
and ggplot2 v3.3.0.9000639 and ggpubr v0.1.8640 for data visualization. ArcMap 
10.5 was used for Fig. 2. Silhouettes in figures were extracted from ‘phylopic’ 
(www.phylopic.org). The PRISMA checklist for systematic reviews is available in 
Appendix 3.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are available at https://github.com/anabenlop/Island_Rule and https://
figshare.com/projects/Body_size_evolution_in_insular_vertebrates/89102.

code availability
The code to conduct the analyses is available at https://github.com/anabenlop/
Island_Rule.
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Extended Data Fig. 1 | conceptual models depicting the different hypotheses tested to explain insular size shifts in vertebrates. Expected insular size 
shifts are depicted as a result of (a) Island rule effects; (b) island area; (c) spatial isolation (distance to mainland); (d) a combination of island area and 
distance to mainland; (e) primary productivity, (f) seasonality in resources; (g) mean temperature affecting mostly small species in cool islands; (h) mean 
temperature affecting mostly small species in warm islands; (i) mean temperature affecting all species; (j) seasonality in temperature; (k) precipitation; (l) 
species dietary preferences (carnivores vs non carnivores). Detailed information on the different hypotheses can be found in Supplementary Table 1.
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Extended Data Fig. 2 | Phylogenetic meta-regression models of island body size versus mainland body size. Mean body size (ln-transformed mass, in 
g) on islands versus mainland is shown for (a) mammals, (b) birds, (c) reptiles and (d) amphibians. The dashed line has a slope of 1 and an intercept of 0. 
The solid lines represent the phylogenetic meta-regression slope estimate. The intercept a and slope b are presented in each plot along with CI. The island 
rule holds if the intercept is > 0 and the slope < 1.
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Extended Data Fig. 3 | variation accounted for by random factors (Source, Species and Phylogeny) and residual variation. The amount of variance 
accounted for by phylogeny was the largest for reptiles and mammals, and low for birds. The extent of variance explained by data sources was larger for 
mammals and reptiles, and low for amphibians and birds. The residual variance was highest for birds, followed by mammals, amphibians and reptiles, 
indicating that other factors besides mainland body size may help to explain insular size shifts (see Extended Data Fig. 5–8).
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Extended Data Fig. 4 | Phylogenetic random effects across taxonomic orders. Boxplots of the variation in phylogenetic random effects across orders 
are shown for (a) mammals and (b) birds; and across families for (c) reptiles and (d) amphibians. Positive values indicate a tendency towards gigantism, 
whereas negative values indicate dwarfism.
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Extended Data Fig. 5 | ecological factors explaining insular size shifts in mammals. Only 1-2 variables are displayed per plot, while keeping the other 
predictors at median values. Continuous variables are represented at the 10% and 90% quantile for each extreme (close vs remote or small vs large, and 
low vs high). lnRR > 0 indicates gigantism, lnRR < 0 indicates dwarfism, and lnRR = 0 indicates no shift in body size in islands compared to mainland 
populations. Shaded areas represent 95% CI. QM indicates the explained heterogeneity (variance) by the interaction between each explanatory factor and 
body mass (for example mass:area in panel a), or the explanatory factor only in case of intercept-only models (for example temperature in this case). See 
Supplementary Table 7 for details.
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Extended Data Fig. 6 | ecological factors explaining insular size shifts in birds. Only 1-2 variables are displayed per plot, while keeping the other 
predictors at median values. Continuous variables are represented at the 10% and 90% quantile for each extreme (close vs remote or small vs large, and 
low vs high). lnRR > 0 indicates gigantism, lnRR < 0 indicates dwarfism, and lnRR = 0 indicates no shift in body size in islands compared to mainland 
populations. Shaded areas represent 95% CI. QM indicates the explained heterogeneity (variance) by the interaction between each explanatory factor and 
body mass (for example mass:area in panel a), or the explanatory factor only in case of intercept-only models (for example temperature in this case). See 
Supplementary Table 7 for details.
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Extended Data Fig. 7 | ecological factors explaining insular size shifts in reptiles. Only 1-2 variables are displayed per plot, while keeping the other 
predictors at median values. Continuous variables are represented at the 10% and 90% quantile for each extreme (close vs remote or small vs large, and 
low vs high). lnRR > 0 indicates gigantism, lnRR < 0 indicates dwarfism, and lnRR = 0 indicates no shift in body size in islands compared to mainland 
populations. Shaded areas represent 95% CI. QM indicates the explained heterogeneity (variance) by the interaction between each explanatory factor and 
body mass (for example mass:area in panel a), or the explanatory factor only in case of intercept-only models (for example temperature in this case). See 
Supplementary Table 7 for details.
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Extended Data Fig. 8 | ecological factors explaining insular size shifts in amphibians. Only 1-2 variables are displayed per plot, while keeping the other 
predictors at median values. Continuous variables are represented at the 10% and 90% quantile for each extreme (close vs remote or small vs large, and 
low vs high). lnRR > 0 indicates gigantism, lnRR < 0 indicates dwarfism, and lnRR = 0 indicates no shift in body size in islands compared to mainland 
populations. Shaded areas represent 95% CI. QM indicates the explained heterogeneity (variance) by the interaction between each explanatory factor 
and body mass (for example mass:area in panel a), or the explanatory factor only in case of intercept-only models (for example seasonality in resources – 
sdNDVI in this case). See Supplementary Table 7 for details.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data from figures was extracted with the package metaDigitise v1.0 in R 3.5.3

Data analysis Data was analysed using: 'R' v 3.5.3 and 'ArcMap' v 10.5

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data and code are available at https://github.com/anabenlop/Island_Rule and https://figshare.com/projects/Body_size_evolution_in_insular_vertebrates/89102
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Phylogenetic meta-analysis of the generality of the island rule in vertebrates and potential mechanisms underlying insular size shifts. 
and 

Research sample We assembled a global dataset of 2,479 island-mainland comparisons for 1,166 insular and 886 mainland species of terrestrial 
vertebrates, including mammals (1,058 island-mainland comparisons), birds (695 comparisons) reptiles (547 comparisons) and 
amphibians (179 comparisons) spread over the globe. In total we included morphometric measurements of 154,875 mainland and 
63,561 insular specimens from species covering a wide range of average body masses (0.18–234,335 g)

Sampling strategy We collected data from articles included in a recent assessment of the island rule and previous compilations included in previous 
studies of reptiles, mammals, and birds, tracing original data sources when possible to extract original measurement data. We 
additionally sampled body size measurements from published studies that did not assess the island rule per se, or – in the case of 
birds – also from original morphometric data collected from museum and live specimens. Overall, we included information retrieved 
from peer-reviewed articles, live and museum specimens, and expedition reports.

Data collection Morphological data obtained from the literature and from measurements of live caught individuals and preserved museum skins. 
Ecological data obtained from the literature. Environmental data was obtained from publically available spatially-explicit rasters.

Timing and spatial scale Data collection started in February 2018 and continued up to November 2020, with major gaps in between due to focus on other 
projects. Note that all data come from literature except for data on museum specimens, which was collected for another study (Pigot 
et al. 2020. NEE 4, 230-239.

Data exclusions We excluded problematic data, such as comparisons that were not supported by taxonomic or phylogenetic evidence, or which 
reported morphometric data restricted to single specimens or without sample size. In addition, we excluded comparisons based on 
extinct taxa since they are often known from very few or incomplete specimens. Excluded studies and reasons for exclusion are 
specified in Supplementary Dataset 3.

Reproducibility No experiments were undertaken. All data and codes necessary to reproduce the findings of this study are available at https://
github.com/anabenlop/Island_Rule

Randomization Our sampled belonged to either island populations, or mainland populations of the same or closely related species. No 
randomization was required or applied.

Blinding NA

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq
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MRI-based neuroimaging
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals No laboratory animals were used.

Wild animals A significant proportion of the avian data are from museum specimens. Some data are included from wild-caught birds that were not 
harmed during data collection and subsequently released into the wild. In all cases, birds were caught by mist-netting, a passive, non-
invasive technique which does not harm the individual birds.

Field-collected samples No samples were taken from the field

Ethics oversight Natural Environment Research Council

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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