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Abstract
1.	 Quantifying the impact of habitat disturbance on ecosystem function is critical 

to understanding and predicting the future of tropical forests. Many studies have 
examined post-disturbance changes in animal traits related to mutualistic interac-
tions with plants, but the effect of disturbance on plant traits in diverse forests 
has received much less attention.

2.	 Focusing on two study regions in the eastern Brazilian Amazon, we used a trait-
based approach to examine how seed dispersal functionality within tropical plant 
communities changes across a landscape-scale gradient of human modification, 
including both regenerating secondary forests and primary forests disturbed by 
burning and selective logging.

3.	 Surveys of 230 forest plots recorded 26,533 live stems from 846 tree species. 
Using herbarium material and literature, we compiled trait information for each 
tree species, focusing on dispersal mode and seed size.

4.	 Disturbance reduced tree diversity and increased the proportion of lower wood 
density and small-seeded tree species in study plots. Disturbance also increased 
the proportion of stems with seeds that are ingested by animals and reduced those 
dispersed by other mechanisms (e.g. wind). Older secondary forests had function-
ally similar plant communities to the most heavily disturbed primary forests. Mean 
seed size and wood density per plot were positively correlated for plant species 
with seeds ingested by animals.

5.	 Synthesis. Anthropogenic disturbance has major effects on the seed traits of tree 
communities, with implications for mutualistic interactions with animals. The im-
portant role of animal-mediated seed dispersal in disturbed and recovering for-
ests highlights the need to avoid defaunation or promote faunal recovery. The 
changes in mean seed width suggest larger vertebrates hold especially important 
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1  | INTRODUC TION

Tropical forests are of fundamental importance for global biodiver-
sity (Barlow et al., 2018; Gibson et al., 2011; Slik et al., 2015), human 
livelihoods (Newton, Miller, Byenkya, & Agrawal, 2016), climate reg-
ulation (Silvério et al., 2015) and carbon storage (Pan et al., 2011), 
yet are increasingly under pressure from anthropogenic impacts 
(Malhi, Gardner, Goldsmith, Silman, & Zelazowski, 2014). The con-
version of closed-canopy forests to agro-pastoral land uses often 
makes global headlines because it results in massive loss of total 
forest area coupled with associated fragmentation effects (Nepstad 
et al., 2014). However, this loss occurs concurrently with the wide-
spread but cryptic degradation of remaining primary forests through 
human-driven disturbances that do not lead to a complete removal 
of the canopy cover, such as selective logging, understory fires and 
hunting (Peres, Barlow, & Laurance, 2006; Sasaki & Putz, 2009). As a 
result, 80% of tropical forest landscapes currently exist in a modified 
state (Potapov et al., 2017), either as secondary forests in recovery 
following the abandonment of productive land uses (Chazdon et al., 
2009), or as varyingly degraded primary forests (Bregman et al., 
2016; Thompson et al., 2013).

The detrimental impacts of human modification on biodiversity 
and carbon stocks in tropical forests are increasingly well known 
(Barlow et al., 2016; Berenguer et al., 2014; Chazdon et al., 2009), 
but the effects on key ecological functions remain unclear (Chapin, 
2003; Chazdon, 2003). Such effects are difficult to measure directly, 
but one indirect method involves assessing the ability of an ecosys-
tem to retain species with functional traits (Petchey & Gaston, 2006; 
Violle et al., 2007). These traits can support key ecological pro-
cesses even if species richness is reduced (Fonseca & Ganade, 2001; 
Peterson, Allen, & Holling, 1998; Tilman et al., 1997), and therefore 
provide important insights into ecosystem resilience (Nimmo, Mac 
Nally, Cunningham, Haslem, & Bennett, 2015). Plant functional traits 
have provided the key to understanding how hyperdiverse tropical 
forest communities respond to environmental change: for example, 
stem traits such as wood density are linked to drought and fire re-
silience (Brando, Oliveria-Santos, Rocha, Cury, & Coe, 2016; Phillips 
et al., 2009), while leaf traits such as specific leaf area are strongly 
related to plant growth rates and life spans (Poorter & Bongers, 
2006). In contrast, plant reproductive traits (e.g. flowers, fruits and 
seeds) have received little attention, despite their importance to 

mutualistic interaction networks and tree recruitment in tropical 
forest systems.

Seed traits, such as seed mass and dimensions, are important 
determinants of the plant–animal interactions central to seed dis-
persal, yet are understudied compared to stem and leaf traits. Seed 
traits are yet to be considered in large-scale trait-based assessment 
of tropical forests (e.g. Gillespie Eco-evolutionary Models; Delong & 
Gibert, 2016) or individual-based simulations of tropical forest plant 
communities (e.g. Traits-based Forest Simulator; Fyllas et al., 2014). 
Nonetheless, there is growing evidence that seed traits are likely 
to respond to human disturbance, with implications for ecological 
processes linked to rainforest stability and resilience (Galetti et al., 
2013). For example, tropical forests can experience an increase in 
the number of abiotically dispersed pioneer species and a reduction 
in the number of large-seeded animal-dispersed species when hab-
itat is fragmented (Laurance et al., 2006) or key seed dispersing an-
imals are hunted out (Terborgh et al., 2008). These changes may be 
mirrored in selectively logged or wildfire-affected forests (Barlow 
& Peres, 2008; Cochrane & Schulze, 1999; Gerwing, 2002; Slik, 
Verburg, & Keßler, 2002) where compositional shifts converge to-
wards early successional communities (Berenguer et al., 2014, 2018). 
The negative outcomes of forest disturbance are partially reversed 
by succession in secondary forests, which become functionally more 
similar to primary forests over time (Arroyo-Rodríguez et al., 2017; 
Howe, 2016).

Changes in plant traits can be mediated through interactions 
with fauna, as many tropical forest vertebrates depend upon fruit 
as a food resource (e.g. Bregman, Sekercioglu, & Tobias, 2014), and 
the vast majority of neotropical plants rely on animals to disperse 
their seeds (Fleming & Kress, 2011; Howe & Smallwood, 1982). 
The loss of large-bodied frugivorous taxa is associated with altered 
composition of plant communities and an increase in abiotically dis-
persed species across tropical Africa, Asia and the Americas (Bovo 
et al., 2018; Harrison et al., 2013; Peres, 2000; Terborgh et al., 
2008; Wright, 2003; Wright, Hernandéz, & Condit, 2007). Two 
large-scale assessments have linked this to reductions in above-
ground vegetative biomass, based on the weak-positive associa-
tion typically found between larger seeds and higher wood density 
species (Bello et al., 2015; Peres, Emilio, Schietti, Desmoulière, & 
Levi, 2016), although this relationship varies geographically across 
Amazonia (ter Steege et al., 2006).

functional roles in these human-modified forests. Monitoring fruit and seed traits 
can provide a valuable indicator of ecosystem condition, emphasizing the impor-
tance of developing a comprehensive plant traits database for the Amazon and 
other biomes.

K E Y W O R D S

forest degradation, forest fires, forest regeneration, frugivory, functional traits, secondary 
forest, seed size, selective logging
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Despite clear evidence of the importance of dispersal mode and 
seed traits, we still lack a large-scale understanding of variation 
in these traits across human-modified tropical landscapes, where 
floral composition is a complex product of the direct effects of  
human-induced changes to forest structure (logging or fire-induced 
mortality) and landscape configuration (edge effects, reduced hab-
itat patch size, increased isolation), and the indirect effects of de-
faunation and changes in seed dispersal and predation—all of which 
may be magnified or ameliorated by feedbacks inherent in the 
fruit–frugivore mutualism (Ganzhorn, 1995). As such, a large-scale 
assessment of dispersal mode and seed traits can provide import-
ant insights into the functional status of human-modified tropical 
forests, their potential resilience and policy interventions that may 
enhance recovery.

We address this knowledge gap by analysing the dispersal 
mode and seed size of over 26,000 stems measured in 230 0.25 ha 
plots across two landscapes in the Brazilian Amazon. Plots were 
spread across forest classes that encompass disturbed and un-
disturbed primary forests, and a chronosequence of secondary 
forests that have previously been completely clear cut. First, we 
ask, how disturbance within primary forests and the process of 
succession within secondary forests affect the relative frequency 
of seed dispersal modes (see Table S1 for definitions). Second, we 
test how plot-level seed size in human-modified Amazonian for-
ests compares to undisturbed forests. We focus on seed size in 
gut-dispersed species because of the importance of its relation-
ship with gape size in frugivores (Levey, 1987; Wheelwright, 1985). 
Third, we examine whether any variation in dispersal mode and 
seed traits can be explained by our measures of disturbance his-
tory, landscape configuration and local environment. Finally, we 
examine the strength of the relationship between seed size and 
wood density, a widely used stem trait that is strongly related to 
disturbance and recovery (Berenguer et al., 2018) and is of criti-
cal importance for timber stocks and carbon storage (Baker et al., 
2004; Chave et al., 2006). The strength and direction of the rela-
tionship between wood density and seed size is central to simu-
lated models of defaunation and carbon stocks (Bello et al., 2015; 
Peres et al., 2016; Wright, Ackerly, et al., 2007), but these links 

have not been assessed in primary forests affected by either se-
lective logging or understorey fires, nor in regenerating secondary 
forests that have been previously clear cut.

2  | MATERIAL S AND METHODS

2.1 | Study sites

Forest inventories were conducted in the municipalities of 
Paragominas (PGM; 2°59′S, 47°21′W) and Santarém-Belterra-
Mojuí dos Campos (STM; 2°26′S, 54°42′W), Pará state, in the east-
ern Brazilian Amazon. The availability of a gradient of varyingly 
disturbed primary and varyingly aged secondary (6–22+ years) for-
ests at the landscape scale, coupled with the diverse range of na-
tive fruit–frugivore interactions, makes these two regions an ideal 
setting to investigate how human modification of forests affects 
plant functional traits related to seed dispersal. In each region, 18 
drainage catchments (mean area ± SD = 4,667.6 ± 752.2 ha) were 
selected along a deforestation gradient, with forest cover ranging 
from 6% to 100% in each catchment (Gardner et al., 2013). Within 
each catchment, 0.25 ha plots (250 × 10 m) were distributed in pro-
portion to the prevailing land uses (i.e. a catchment with more for-
est cover had more study plots). A total of 230 plots (57.5 ha) were 
surveyed across the two regions (PGM: 120, STM: 110; Table 1) in 
2010 and 2011. No signs of pre-Columbian settlements, such as 
terra pretas (McMichael et al., 2012), were found in any of our plots 
(Berenguer et al., 2014).

All plots were located in evergreen terra firme forests at least 
1,500  m apart and at least 100  m from forest edges to reduce 
edge effects (Tabarelli, Lopes, & Peres, 2008). See Gardner et al. 
(2013) and Berenguer et al. (2014) for a study site map and further 
explanation of sampling design. A combination of physical evidence 
and Landsat images (see Berenguer et al., 2014 for details) was 
used to assign each plot to one of the six different forest classes 
along a disturbance gradient: undisturbed primary (U); disturbed 
primary–burned (D_B); disturbed primary–logged (D_L); disturbed  
primary–burned-and-logged (D_BL); secondary–old [>20  years] 

Forest class

Paragominas Santarém

N plots Stems Species N plots Stems Species

Undisturbed primary 13 1,829 271 17 1,996 363

Disturbed primary

Burned 0 0 0 7 790 260

Logged 44 5,473 460 26 3,118 498

Burned-and-logged 44 5,167 390 24 2,799 418

Secondary

Old (>20 years) 5 581 107 20 2,516 276

Young (≤20 years) 15 1,013 142 17 1,251 150

Total 120 14,063 607 110 12,470 701

TA B L E  1   Number of plots (N) surveyed 
and numbers of stems and species of live 
tree ≥10 cm diameter at breast height per 
region in each forest class
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(S_O); and secondary–young [≤20  years] (S_Y). Within each plot, 
all live tree stems (including palms) with diameter at breast height 
(DBH) ≥10 cm were measured, identified by experienced botanists 
and, in case of doubt, samples were compared with reference ma-
terial in the regional herbaria of Embrapa Amazônia Oriental and 
the Museu Paraense Emílio Goeldi, Belém, Brazil. A total of 26,533 
stems were measured (PGM: 14,063, STM: 12,470; Table 1) and 
99.4% of all stems were identified to species level. We excluded 
39 Brazil nut tree stems Bertholletia excelsa H. & B. (Lecythidaceae) 
from the secondary forest plots as their very large diameters sug-
gested they were uncut during the clear-cur process due to legal 
protection. Tree species were classified into families according to 
the APG III system (APG III, 2009). Nomenclature was verified and 
standardized using The Plant List (2013).

2.2 | Trait measurements

We collected data on a range of fruit and seed traits of relevance to 
seed dispersal from a combination of herbarium collections, scien-
tific literature and online databases. We included a total of 24,400 
records (15,693 fruit; 8,707 seeds) from individually examined 
specimens (recording lengths and weights) at three of the most 
important herbaria in the Brazilian Amazon: (a) Embrapa Amazônia 
Oriental, Belém, (b) Museu Paraense Emílio Goeldi, Belém and  
(c) Orsa Florestal, Monte Dourardo (Table S2). We also extracted fruit 
trait data from literature sources (see Table S3 for details), including 
six books and nine journal articles, in addition to literature sources 
contained within Frubase (Jordano, 1995). Further records were 
obtained for 201 species using online sources including the Royal 
Botanic Gardens Kew Seed Information Database (http://data.kew. 
org/sid/) and the New York Botanical Garden C. V. Starr Virtual 
Herbarium (http://sweet​gum.nybg.org/scien​ce/vh/). Full details of 
fruit and seed traits compiled, as well as measurement protocols, 
are provided in Table S4.

Where available in each source, we recorded information on dis-
persal mode, fruit type, dehiscence, presence of fleshy tissue or aril, 
fruit colour, fruit shape, fruit dimensions, fruit mass, seed shape, seed 
colour, seed dimensions, seed mass, number of seeds, diaspore type 
and animal dispersers (Table S3). Dispersal modes from the litera-
ture were collapsed to the following categories: (a) endozoochorous 
(gut-dispersed) sensu stricto (i.e. definite endozoochory); (b) endo-
zoochorous (gut-dispersed) sensu lato (i.e. possible endozoochory);  
(c) synzoochorous (scatter-hoarded); and (d) non-zoochorous (Table S1). 
In cases where the dispersal mode was not stated or ambiguous  
(c. 10% of species, 5% of stems), we used functional traits to assign 
fruits to a predominant dispersal mechanism (van der Pijl, 1982; 
Thomson et al., 2010). Only 17 species (2.0%) and 489 stems (1.8%) 
were unclassified in terms of dispersal mode, and only 22 species 
(2.6%) and 466 stems (1.8%) unclassified for fruit type.

Fruit and seed dimensions (length, width and depth) and mass 
were treated as continuous variables. We focused on seed width 
(defined as the maximum distance along a plane passing through the 

second-longest axis) in gut-dispersed endozoochorous species (using 
the ‘lato’ definition of possible endozoochory) as the most appropri-
ate measure of seed size because our question regarding the effects 
of disturbance and recovery upon seed size is based on the associa-
tion between seed size and the gape size of animal dispersal agents 
(Dehling, Jordano, Schaefer, Böhning-Gaese, & Schleuning, 2016; 
Donoso, Schleuning, García, & Fründ, 2017; Mazer & Wheelwright, 
1993; Wheelwright, 1985). This approach was further supported by 
the positive relationships between seed width and dry seed mass, 
and other dimensions of both seeds and fruits (i.e. length, weight) 
for subsets of the species where more than one dimension was avail-
able (Figure S1). Furthermore, although dry seed weights provide 
a good indicator of resources available for seedling establishment 
(Leishman & Westoby, 1994), seed width is less likely to be affected 
by water content. We obtained a seed width value for 771 (94.8%) 
of endozoochorous tree species (PGM: 596, STM: 686) and 25,491 
(96.1%) of tree stems.

In addition to data on fruit and seed traits, we extracted wood den-
sity data for tropical South America from the Global Wood Density 
Database (Zanne et al., 2009). For stems not identified to species level 
(0.6%), we used the mean seed width dimensions and wood densities 
for the appropriate genus or family, accordingly, and for unidentified 
stems (<0.2%) we used mean dimensions across all stems in the same 
vegetation plot (see Berenguer et al., 2014 for details).

2.3 | Data analyses

To assess variation in plant traits across human-modified tropical 
forests, we calculated the proportion of stems in each study plot 
that belonged to each broad category of seed dispersal mode and 
fruit type (Table S1). We used a chi-squared test (Type II Wald) 
with Tukey comparisons to evaluate differences in the proportion 
of stems per plot in each seed dispersal and fruit type category 
across the different forest classes, and also the number of spe-
cies per plot in each seed dispersal category. We used an ANOVA 
to similarly test differences in seed width. To assess variation in 
(a) the proportion of endozoochorous stems (sensu lato) per plot 
and (b) seed width among endozoochorous species across forest 
disturbance classes, we used GLMMs with binomial or Gaussian 
distributions for proportional and seed width data respectively. To 
account for potential spatial autocorrelation and biogeographic dif-
ferences, we included ‘catchment’ as a nested random factor and 
examined correlograms of Moran's I against distance. We adjusted 
all binomial models that showed overdispersion by adding an ob-
servation-level random effect (Bolker et al., 2009; Harrison, 2015). 
For species count data, we used a negative binomial distribution 
because there was high overdispersion with a Poisson distribution. 
To assess any disproportionate influence of palms, we repeated the 
GLMMs excluding palm stems (14 species, 409 individuals).

We used basal area as our main proxy for both primary forest 
disturbance and secondary forest recovery, because forest biomass 
(which is largely defined by stem basal area; Berenguer et al., 2015) 

http://data.kew.org/sid/
http://data.kew.org/sid/
http://sweetgum.nybg.org/science/vh/
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increases over time in secondary and disturbed primary forests 
(Ferreira et al., 2018; Lennox et al., 2018) while basal area declines 
with the intensity of edge effects, selective logging and wildfires 
(Berenguer et al., 2014). Potential predictors were selected from a 
comprehensive range of environmental variables (Berenguer et al., 
2014; Gardner et al., 2013) to cover both local and landscape-level 
conditions: basal area, soil clay content, distance to nearest pri-
mary forest edge, plot slope, surrounding area of primary forest 
cover and surrounding area of undisturbed primary forest cover 
(Table 2). We constructed separate models for disturbed and sec-
ondary forest plots because two of the landscape-level variables 
(edge distance and undisturbed forest cover) were not relevant for 
secondary forest patches and were therefore calculated only for 
primary forests. All combinations of first-order models were ranked 
using Akaike information criteria (AICc) values for small samples 
sizes, averaging all models with ΔAICc < 4.0 and calculating the rela-
tive importance of each predictor variable by summing AICc weights 
(Burnham & Anderson, 2002). We also present diversity results to 
explore whether ecosystem function tracks or precedes species 
loss (SI Methods). Finally, we tested for relationships between seed 
width and wood density (and basal area), both at the community 
level (using mean values per plot weighted by individual density) 
and species level (using mean values per species).

All analyses were conducted in r version 3.3.2 (R Core Team, 
2016); models were built using the packages lme4 (Bates, Mächler, 
Bolker, & Walker, 2015), lmerTest (Kuznetsova, Brockhoff, & 
Christensen, 2017) and glmmTMB (Brooks et al., 2017), and model 
selection was conducted using the package MuMIn (Bartoń, 2016). 
We standardized the continuous explanatory variables using the 
sta function from the package vegan (Oksanen, Blanchet, & Kindt, 
2013) and checked the adjustment of all models using the package 
DHARMa (Hartig, 2019). We conducted the Moran's I tests and cor-
relograms using the spdep (Bivand & Wong, 2018) and ncf (Bjørnstad, 
Ims, & Lambin, 1999) packages.

3  | RESULTS

3.1 | Prevalence of dispersal modes and fruit types

We sampled a total of 26,533 live tree stems ≥10 cm DBH distrib-
uted across 230 forest plots, including 846 species from 293 genera 
in 72 families (Table 1). Animal dispersal (zoochory) was the disper-
sal mode for the majority of both species (720; 85.1%) and stems 
(22,578; 85.1%; Table S5). Gut dispersal (endozoochory) comprised 
the majority of these, and levels of endozoochory (sensu lato) were 
significantly higher in secondary forest plots, and primary forest 
plots that were both burned and logged, compared to undisturbed 
primary forest (χ2 = 69.45, p <  .001; Figure 1). The most common 
fruit types were berry-like, capsule-like and drupe-like, with the 
relative proportion of all fruit types varying significantly across for-
est classes (Figure S2). When compared to undisturbed forests, dis-
turbed primary and secondary forest plots often contained elevated 
levels of compound fruits (e.g. Moraceae, Siparunaceae, Urticaceae) 
and syncarpia (e.g. Annonaceae), and reduced levels of berries and 
capsules. The number of gut-dispersed species across forest classes 
(Figure S3) closely matched the pattern for overall species richness 
(Figures S4 and S5).

3.2 | Seed size in endozoochorous stems

Our use of seed width as an overall indicator of seed size was sup-
ported by strong positive relationships across species between fruit 
weight and length, and seed weight and length, based on our meas-
urements of carpological specimens (Figure S1a–d), and between seed 
weight and seed length using measurements from literature sources 
(Figure S1e). The seed width of gut-dispersed tree stems was signifi-
cantly lower in secondary and disturbed burned-and-logged primary 
forests than in undisturbed primary forests (ANOVA: F5,244  =  32.7, 

TA B L E  2   Summaries of the environmental variables used in this study; further details of sampling methods are described in Gardner et al. 
(2013) and Berenguer et al. (2014)

Code Variable Proxy for Methodology Sample scale Models

BA Basal area Forest age/ 
disturbance

  Plot Disturbance
Recovery

CC Clay content Soil conditions Soil granulometry using 
densimeter

Plot Disturbance
Recovery

ED Edge distance Local landscape 
context

  Plot Recovery

S Slope Soil conditions   Plot Disturbance
Recovery

PF Primary forest cover 
(including disturbed 
forests)

Forest condition Vegetation classification 
based on LANDSAT  
imagery

1 km radius buffer 
around each  
transect

Disturbance
Recovery

UF Undisturbed forest  
cover (no evidence  
of logging or  
wildfires)

Land-use history/
wider landscape 
context

Vegetation classification 
based on LANDSAT  
imagery

1 km radius buffer 
around each  
transect

Recovery
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p < .001), and significantly lower in young secondary forests than in all 
disturbed forests (Figure 1). Mean seed width was significantly smaller 
in burned-and-logged forest than in forest that had been either logged 
only or burned only but old secondary forests were not significantly 
different from either young secondary forests or burned-and-logged 
forests.

3.3 | Drivers of change in dispersal mode and 
seed size

Basal area—our main proxy for forest condition (Figures S6 and 
S7)—was the only significant variable influencing the proportion 
of endozoochorous-dispersed stems, with a strong negative ef-
fect in models for primary forests (Figure 2a). Basal area was also 
the most important variable influencing seed width, with a strong 
positive effect in models for disturbed primary forests (Figure 2c). 
Local variables, including soil clay content and slope, and landscape 
variables, including the proportion of primary and undisturbed for-
est within 1  km buffers, had weak and non-significant effects in 
all models. We found no significant spatial autocorrelation over-
all; in all models tested, the correlograms showed a few distance 
classes with significant spatial autocorrelation (Figure S8) but 
these classes were not enough to create a significant spatial bias in 
our mixed model frameworks (Table S6). Results were unaffected 
when excluding palm stems from the analyses (Figure S9), with 

F I G U R E  1   Proportion of tree stems (N = 26,533) per dispersal category (a, b and d–f), and mean seed width (mm) for endozoochorous 
(lato) stems (c), sampled across forest classes in both study regions (N = 230 plots). Shading represents forest classes along the disturbance 
gradient: U = undisturbed; D_B = disturbed–burned; D_L = disturbed–logged; D_BL = disturbed–burned-and-logged; S_O = secondary–old; 
and S_Y = secondary–young. Boxplots represent first and third quartiles, whiskers extend up to 1.5 times the inter-quartile range, points 
beyond are plotted individually, letters above represent Tukey subsets, significance: *p < .05, **p < .01, ***p < .001
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the exception of clay becoming a significant predictor of the pro-
portion of endozoochorous-dispersed stems in secondary forests 
(Figure S9, panel B).

3.4 | Relationships between functional traits

The mean value of wood density across forest classes was quali-
tatively similar to mean seed width (Figure S10) and was signifi-
cantly lower in disturbed primary and secondary forests than in 
undisturbed primary forests. The similarity of the responses of 
wood density and seed width was reflected by a strong positive 
relationship (Pearson's: r = .84, p < .001) between their plot-level 
mean trait values for the endozoochorous species—but this re-
lationship was not significant for synzoochorous species and 
was negative for non-zoochorous species (Figure 3d–f). Species-
level correlations between seed width and wood density were 

much weaker, and also varied according to seed dispersal mode 
(Figure 3a–c).

4  | DISCUSSION

Our results demonstrate that the effect of tropical forest distur-
bance extends beyond species loss to include changes in the preva-
lence of functional traits related to seed dispersal. In particular, 
through our focus on plant traits, we found that, counter-intuitively, 
disturbance lead to tree communities in which a greater proportion 
of species and individuals rely on animal dispersal—but with a loss of 
functional breadth, and a significant shift towards small-seeded spe-
cies. This complex process of community disassembly following for-
est degradation from, for example, fire and logging is contrasted by 
the reassembly observed in secondary succession. We discuss our 
results on the effects of disturbance and recovery on seed dispersal 

F I G U R E  3   Relationships between seed width (mm) and wood density (g/cm3) for individual tree species (a–c), mean values across 
all forest plots (d–f), and for plots in each forest class (g–i): U = undisturbed; D_B = disturbed–burned; D_L = disturbed–logged; 
D_BL = disturbed–burned-and-logged; S_O = secondary–old; and S_Y = secondary–young. Colours represent dispersal categories: 
blue = endozoochorous (lato), yellow = synzoochorous, and red = non-zoochorous trees ≥10 cm diameter at breast height. For significant 
correlations (Pearson's, r), lines and shading represent linear models with 95% CI, significance: *p < .05, **p < .01, ***p < .001
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modes and seed size in terms of implications for both frugivores and 
forest resilience.

4.1 | What does an altered seed dispersal network 
mean for disturbed forest recovery?

Our results show that human disturbance has led to a shift in both 
dispersal mode and seed traits in these tropical forests. There are 
likely to be multiple drivers of these changes. For example, hunting 
can reduce seed dispersal by large birds and mammals (Terborgh 
et al., 2008), and there may be an interaction between structural 
disturbance and hunting pressure. Selective logging may also in-
fluence patterns, as many of the valuable timber species such as 
Manilkara spp. and Brosimum spp. have endozoochorous fruits. 
However, other valuable species such as Dinizia excelsa are not 
animal dispersed (Peres & Van Roosmalen, 2002; Rosin, 2014). 
Isolating these disturbance-specific relationships will likely be dif-
ficult in human-modified landscapes where forests are responding 
to multiple drivers of change.

While there was a positive influence of secondary forest stage 
on seed widths, these remained far below the seed widths in pri-
mary forests even after more than 20 years of succession. There are 
three reasons that could explain this pattern. First, an increase in 
the dispersers of small seeds could lead to an increased recruitment 
of small-seeded trees in forests after human disturbance. Many 
small-bodied frugivore taxa are common in disturbed forests (Lopes 
& Ferrari, 2008; Medellín, Equihua, & Amin, 2000), for example both 
bats and birds are known to be particularly important seed dispersal 
agents of key pioneer tree species such as Cecropia spp. and Vismia 
spp. (Medellin & Gaona, 1999), and small frugivorous birds have been 
shown to increase in abundance after a single wildfire, feeding off 
and helping disperse the abundant small-seeded Annonaceae and 
Melastomataceae that dominate the understorey (Barlow & Peres, 
2004, 2006).

Second, the lack of large-seeded fruiting species could fail to at-
tract the largest dispersers—preventing the immigration of zoocho-
ric large-seeded species which are known to rely upon large-bodied 
frugivores as seed dispersal agents (Doughty et al., 2016; Galetti 
et al., 2018), and even limiting their effective dispersal if present. 
This introduces a possible destabilizing feedback where changes in 
plant communities negatively impact animal communities, and those 
impoverished animal communities subsequently lead to further al-
teration in plant communities. With simultaneous losses in both 
plant and animal communities, future ecosystem function could ap-
pear appropriately balanced but this perspective would ignore the 
problem of the shifting baseline. Considering that intact baseline is 
crucial to more fully address the concept of resilience that is maxi-
mizing the scope for current and future recolonization of degraded 
areas by primary forest species. Third, our focus on dispersal traits 
in stems >10 cm DBH means we may have missed the presence of 
slow-growing large-seeded species that have not yet met the size 
threshold for inclusion. Indeed, the successional trajectory of forest 

recovery means that these smaller stems often hold wood density 
values closer to primary forests than larger stems (Berenguer et al., 
2018), suggesting that a more detailed assessment of the dispersal 
traits of small stems would provide additional insights into secondary 
forest recovery.

Clearly, we have only examined one side of the complex seed 
dispersal network, and have not considered other components that 
determine successful plant recruitment such as Janzen-Connell ef-
fects (Connell, 1971; Janzen, 1970) or edge effects (Tabarelli et al., 
2008). Spatial scale is likely to be important; faster colonization of 
dispersal-limited species might be expected in secondary forest 
patches surrounded by primary forest. However, previous land-
use intensity is also key (Jakovac, Peña-Claros, Kuyper, & Bongers, 
2015), and can be even more important than distance to mature 
forest (Fernandes Neto, Costa, Williamson, & Mesquita, 2019). The 
implications for seed dispersal are also complicated by potential 
trophic cascades and the relative effectiveness of seed dispersal 
agents across different plant species (Schupp, Jordano, & Gómez, 
2010). This includes consideration of the importance of rodents 
as seed predators (Wright et al., 2000), with evidence that small-
seeded species are less protected from rodents (Dirzo, Mendoza, 
& Ortíz, 2007; Fricke & Wright, 2016). The continuing challenge in 
interpreting the effects of disturbance on seed dispersal is to dis-
entangle these dual, interacting effects upon plant and animal com-
munities (Poulsen, Clark, & Palmer, 2013). Although more narrowly 
defined seed dispersal modes may allow more precise insights 
into the effect of disturbance on tropical flora, this remains very 
challenging due to the substantial degree of overlap in generalist 
fruit–frugivore networks (Bascompte & Jordano, 2007) and the 
continued shortage of information on what constitutes effective 
seed dispersal (Howe, 2016).

4.2 | Will disturbed forests help conserve 
Amazonia's diverse frugivorous fauna?

Fruits and seeds represent a key resource for a wide range of 
vertebrate taxa in tropical forests, including bats (Muscarella & 
Fleming, 2007), birds (Kissling, Böhning-Gaese, & Jetz, 2009), 
fish (Goulding, 1980; Horn et al., 2011), primates (Hawes & Peres, 
2014a), reptiles (Valido & Olesen, 2007) and ungulates (Bodmer, 
1990), and these resources are partitioned to some degree 
among frugivore taxa (Gautier-Hion et al., 1985; Hawes & Peres, 
2014b). The high proportion of small-seeded stems producing 
endozoochorous fruits in disturbed primary and secondary for-
ests reinforces the suitability of these forests for small-bodied 
taxa such as small passerine birds and bats (Edwards, Massam, 
Haugaasen, & Gilroy, 2017; Medellin & Gaona, 1999; Muscarella 
& Fleming, 2007). However, it is not clear if these small-seeded 
resources can sustain large-bodied frugivores specializing on 
large-seeded plants; although these species can naturally in-
gest both small and large seeds, and the relationship between 
animal body mass and the average size of ingested seeds may 
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not always be positive (Chen & Moles, 2015), there may be a 
size threshold under which it becomes inefficient to eat small 
fruits. Moreover, large-bodied frugivores may face other envi-
ronmental filters (such as branch connectivity and strength) that 
prevent them from moving through or foraging in disturbed or 
secondary forest.

4.3 | Will changes in plant traits influence carbon 
storage?

Animal–plant interactions have an important but hitherto ne-
glected influence on carbon cycling (Schmitz et al., 2018), and 
large-scale models have simulated the loss of carbon stocks under 
defaunation in undisturbed forests (Bello et al., 2015; Peres et al., 
2016). Our results lend some support to this, as the relationships 
between seed size and the wood density at the plot level were 
very strong. However, these were far weaker at the species level—
suggesting that while disturbed primary and regenerating second-
ary forests have lower values for wood density and smaller seeds, 
the similarity in response is driven by the relative abundance of 
species in plots (Chapin, 2003) rather than any clear trade-offs in 
these traits at the species level (e.g. Díaz et al., 2016). This is in-
teresting because it suggests that it is not just the change in com-
munity composition, through the loss or gain of particular plant 
species, that drives changes in a particular trait, but rather the 
more complex changes in community structure. This shift in the 
community structure of disturbed primary forests, with a time-
lagged turnover from disturbance-sensitive species to distur-
bance-tolerant species (Edwards et al., 2011; Moura et al., 2014), 
and associated changes in particular functional traits (including 
fruit and seed traits), means that ecosystem function can be heav-
ily impacted, even if species richness is maintained at close to pre-
disturbance levels.

The strength of this association between wood density and seed 
size raises the possibility that any processes that limit the dispersal 
of large-seeded species could negatively influence the recovery of 
high wood density forests. This could have longer term implications 
for both the carbon storage and drought sensitivity of forests: wood 
density is the most important predictor of carbon storage in forest 
after tree size (Chave et al., 2006) and a key determinant of drought 
sensitivity (e.g. Phillips et al., 2009). While we do not have enough 
data to examine these issues in detail, the potential influence of de-
faunation on the post-disturbance recovery trajectory of disturbed 
tropical forests (Bregman et al., 2016) represents a crucial research 
aim given very few primary forests in the eastern Amazon have es-
caped some degree of disturbance (Barlow et al., 2016; Tyukavina, 
Hansen, Potapov, Krylov, & Goetz, 2016) and the growing impor-
tance of secondary forests (Vieira, Gardner, Ferreira, Lees, & Barlow, 
2014). While uncertainty remains, it is therefore prudent (from both 
biodiversity and carbon storage perspectives) to maintain intact 
forests, including extensive unlogged areas (Barlow et al., 2016; 
Watson et al., 2018).

5  | CONCLUSIONS

Our results demonstrate that tropical forest disturbance has perva-
sive effects that extend beyond the loss of species richness, and in-
clude major implications for seed dispersal and mutualistic networks. 
In particular, disturbance drives a significant shift in tree communities 
towards small-seeded species, with an increased proportion of spe-
cies and individuals relying on animal dispersal. Similar effects are ob-
served in secondary forests recovering from clear-felling, with older 
secondary forests having plant communities comparable to those 
found in the most heavily disturbed primary forests. These findings 
highlight the importance of developing a more comprehensive plant 
traits database that goes beyond leaf and stem traits to consider sea-
sonal or reproductive traits (flowers, fruits and seeds). They also sug-
gest that animal–plant interactions could provide new insights into 
ecosystem function and resilience in human-modified tropical forests.
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