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abstract: How the relative importance of community assembly pro-
cesses varies with spatial scale is the focus of intensive debate, in part
because inferring the scales at which specific niche-based processes act
is difficult. One obstacle is that standard phylogenetic and functional
diversity metrics may integrate the signals of multiple processes when
combining separate niche axes into one variable (multiple-niche-axis
metrics), potentially obscuring overlapping niche-based processes. We
use simulations to evaluate the power of these metrics to detect com-
petition and habitat filtering when these processes operate across mul-
tiple niche axes and vary in their relative importance. We then test for
both processes at a range of spatial scales in a Neotropical bird assem-
blage. Simulations revealed that multiple-niche-axis metrics had low
power to detect competition and habitat filtering when a mix of both
processes acts across niche axes, whereas metrics focused on single-
niche axes were better able to deal with this complexity. We found the
same contrast in bird communities, where both competition and hab-
itat filtering were detected at the scale of individual territories, but only
by single-niche-axis metrics focused on specific niche axes (e.g., for-
aging traits). Our results suggest that multiple-niche-axis metrics may
produce misleading evidence that niche-based processes are parti-
tioned, particularly across scales, and highlight the importance of an-
alyzing functional diversity patterns on individual niche axes when
testing assembly models.

Keywords: community assembly, environmental filtering, interspecific
competition, niche differentiation, phylogenetic community struc-
ture, Neotropical birds.

Introduction

The study of differences in species resource-use strategies
and their implications for species coexistence has domi-
nated ecology throughout much of the last century, with
evidence for ecological niche partitioning discovered in
communities as diverse as yeast cell cultures, plants, and
birds (Gause 1934; Stubbs and Wilson 2004; Lovette and
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Hochachka 2006). Most recent attention has focused on
clarifying the importance of niche-based processes in
structuring communities relative to purely neutral models
(Hubbell 2001; Chase and Myers 2011), a debate that has
led to a more inclusive concept of the processes involved
in community assembly, including niche-based habitat fil-
tering, interspecific competition, dispersal, and demo-
graphic stochasticity (Vellend 2010; Weiher et al. 2011).
However, this expanded conceptual framework is rarely
specific with regard to the spatial scales at which different
processes have the greatest influence, and the potential
interaction of these processes across scales remains unclear
(Levin 1992; McGill 2010; Chase and Myers 2011; Chave
2013).

Ascertaining the grain sizes (the scales of the local com-
munity or sample plot) at which niche-based processes
operate is critical for understanding how scale dependency
in these processes influences species co-occurrence (Hus-
ton 1999; Weiher et al. 2011). It is generally assumed that
interspecific competition is strongest at the scale of direct
interactions among individuals and therefore becomes
progressively weaker as grain size increases (Weiher and
Keddy 1995; Vamosi et al. 2009). In contrast, habitat fea-
tures such as topography and soil type typically vary over
greater distances than interactions between individuals,
such that habitat filtering is expected to be strongest at
grain sizes larger than those for competition (Swenson et
al. 2007; Kraft and Ackerly 2010) but small enough to
exclude habitat heterogeneity (Weiher et al. 2011).

The classic signature of this transition in niche-based
processes across grain sizes is a niche-differentiated pattern
of regular spacing or overdispersion in the trait values of
co-occurring species at small grain sizes (MacArthur and
Levins 1967; Ricklefs and Travis 1980), shifting to the op-
posite pattern of clustering of species’ trait values within
communities at intermediate grain sizes, especially when
spread across large spatial extents that encompass in-
creased habitat heterogeneity (Weiher and Keddy 1995;
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Swenson et al. 2007). Similarly, to the extent that closely
related species share similar trait values, community phy-
logenetic structure should shift from the co-occurrence of
more distantly related (phylogenetic overdispersion) to
more closely related (phylogenetic clustering) species than
expected by chance with increasing spatial scale (Swenson
et al. 2007; Cavender-Bares et al. 2009). Yet, the generality
of this transition across scales is poorly understood because
previous studies have focused on only a few taxonomic
groups and produced mixed results (Vamosi et al. 2009;
McGill 2010).

Most analyses exploring community assembly processes
across scales have focused either on plants or microbes
(e.g., Cadotte 2006; Swenson and Enquist 2009; Kraft and
Ackerly 2010), as these organisms are highly amenable to
observational and experimental tests. In contrast, it is rel-
atively difficult to define communities and delimit sam-
pling scales in mobile animal species, particularly verte-
brates (Vamosi et al. 2009). Because of this long-standing
research bias, our knowledge of the ecological and evo-
lutionary patterns describing communities is primarily
based on systems where the spatial scale of interactions
between individuals is likely to be highly circumscribed,
perhaps underestimating the signature of competition at
larger scales (e.g., Gotelli et al. 2010). Alternatively, high
mobility may allow species to mediate competitive inter-
actions rapidly and thus result in communities that appear
randomly assembled or even clustered at smaller spatial
scales (Gómez et al. 2010; Weiher et al. 2011; Harmon-
Threatt and Ackerly 2013).

Another important source of uncertainty relates to an-
alytical techniques. Most recent studies of community as-
sembly across scales have applied phylogenetic or trait-
based metrics that are sensitive to both overdispersion and
clustering (e.g., Cavender-Bares et al. 2006). Moreover,
many of these trait-based metrics combine multiple traits
into a single analysis (e.g., functional diversity [FD];
Petchey and Gaston 2002) or do so indirectly in the case
of phylogenetic methods (Webb et al. 2002). Because dif-
ferent traits are often associated with different niche axes
(Violle et al. 2007), metrics that combine traits from mul-
tiple niche axes may have the advantage of providing an
integrated overview of community structure. However,
when different assembly processes act on separate niche
axes independently or exert combined effects on the same
niche axis, a potential drawback is that these multiple-
niche-axis metrics may combine the signals of contrasting
assembly processes (Swenson and Enquist 2009). Such
metrics may therefore obscure the niche-based assembly
processes involved at a given scale if one process masks
another or if multiple processes cancel each other’s signal,
generating patterns consistent with neutral dynamics
(Kraft et al. 2007; Weiher et al. 2011). For example, Spa-

sojevic and Suding (2012) found that along a plant pro-
ductivity gradient, multitrait FD did not differ from FD
expected under random assembly because functional di-
versity in traits associated with above- and belowground
competition showed significant but opposite patterns with
increasing resource availability.

Despite the relevance of this issue for improving the
accuracy of inferences about community assembly (see
Aiba et al. 2013), it is not yet known how most multiple-
niche-axis metrics of community phylogenetic or trait
structure vary in their sensitivity to a given niche-based
assembly process when multiple processes do not all act
on the same niche axes and particularly when different
processes vary in their relative strength. Also largely un-
known is whether single-niche-axis metrics increase rates
of detection of niche-based processes, thereby revealing
different patterns across spatial scales. Addressing these
methodological issues is essential in order to connect the
results of analyses using functional and phylogenetic di-
versity metrics to community assembly processes.

This article has two aims: (1) to evaluate the power of
multiple-niche-axis (including phylogenetic) and single-
niche-axis metrics to detect interspecific competition and
habitat filtering when these processes operate across mul-
tiple niche axes and vary in their relative strength, and (2)
to test for the predicted shift in niche-based assembly pro-
cesses from interspecific competition to habitat filtering
in Neotropical bird communities across four nested grain
sizes (0.8–6.4 ha) using multiple-niche-axis and single-
niche-axis metrics. Tropical insectivorous birds provide an
excellent case study of scale dependency in vertebrate com-
munity assembly. They can be efficiently surveyed to gen-
erate point communities—that is, assemblages of species
with high likelihood of interaction because their home
ranges overlap at a single point. In addition, many species
hold territories year-round and defend them against het-
erospecifics (Robinson and Terborgh 1995), suggesting
that competitive exclusion may extend considerably fur-
ther than the size of individual organisms. Our assessment
of metric performance (aim 1) was based primarily on
simulated communities, but the size of the species pool,
local species richness, and trait data for community sim-
ulations were obtained from observed bird community
and trait data (aim 2).

Methods

Neotropical Bird Community Data

We conducted bird surveys from July through November
2010 in the Kosñipata Valley at Wayqecha Biological Re-
search Station, Peru (lat. 13�10′35′′S, long. 71�35′20′′W), at
72 survey points spaced at regular 120-m intervals on a
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120 m Cloud forest Shrub Grassland

Figure 1: Diagram of the study grid. Outlined areas (top left) indicate how individual survey-point communities were combined with
neighboring points in the study area to create communities at four nested spatial scales (grain sizes): 0.8 ha (solid line), 1.6 ha (dashed
line), 3.2 ha (dash-dotted line), and 6.4 ha (dotted line). Sample size was 72 communities for the smallest grain size and 9 communities
for the largest. The relationship between points and habitats is shown in grayscale; see figure A1 for a satellite image.

grid layout (fig. 1). The grid covered an elevation range
of 2,570–3,050 m and contained two major habitat types—
montane cloud forest and high-elevation puna grassland—
in roughly equal proportion (figs. 1, A1; figs. A1–A6 are
available online). A third shrub habitat type was present
in areas where the ecotone between the cloud forest and
grassland was wider. For a full description of vegetation
types and topography across the site, see Gibbon et al.
(2010).

At each of the 72 points, we conducted standardized
audial and visual bird surveys, focused on circular areas
with a 50-m radius centered on each point, ensuring that
neighboring survey-point communities were nonoverlap-
ping. The grain size of individual survey-point commu-
nities was approximately 0.8 ha. The total extent of our
study site is small enough (∼80 ha) that most study species
are able to disperse across the site within minutes, and
even the most nondispersive species (e.g., Scytalopus) are
potentially able to do so within a single generation. See
appendix A (apps. A, B are available online) for a full
description of survey methods.

Forty-one different species were observed across all 72
points (table A1; tables A1–A8 are available online). This
observed species richness represented 91% of the estimated
true species richness for the study site (Chao II incidence-
based estimator [Chao 1987] implemented in EstimateS
[Colwell 2000]). In addition, the mean proportion of new
species detected at a survey point leveled off at !0.05 spe-
cies per visit after five visits (fig. A2). Thus, our surveys

captured a high proportion of bird diversity across the
study site.

Community survey, vegetation survey, and functional
trait data for all species are available online in the Dryad
Digital Repository: http://doi.org/10.5061/dryad.k9m20
(Trisos et al. 2014).

Trait Data and Associated Niche Axes

As most community assembly models apply to interactions
within trophic levels (Hubbell 2001; Cavender-Bares et al.
2009), we restricted our analyses to bird species with pri-
marily insectivorous diets. The link between morpholog-
ical traits and ecology is relatively well established in birds,
as the avian beak is a classic index of trophic niche (Hutch-
inson 1959; Schoener 1965; Grant and Grant 2006) and
other biometric measurements such as tarsus and wing
length can be related to foraging maneuver, microhabitat,
and substrate use (Miles and Ricklefs 1984), helping us to
identify candidate sets of traits that represent key niche
axes potentially important in community assembly. We
measured six functional traits (beak length, beak width,
beak depth, wing length, tail length, and tarsus length)
from 1 to 70 (mean � SE: 11.54 � 2.43) individuals.
Data for most species were sampled from individuals cap-
tured by mist-netting at the study site, with missing trait
values for seven species measured on museum specimens
from localities as close as possible to the study site. Mea-
surements of live birds and museum specimens were taken
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using standard procedures described in appendix A. Be-
cause of the difficulty of sampling a larger number of birds
using mist-netting, and because the proportion of variance
(calculated using ANOVA) in trait values explained by
species (84.5%–94.7%) was far greater than that explained
by intraspecific differences (5.3%–15.5%) for the 21 better-
sampled species (n 1 5 individuals; table A2), we used
mean trait values normalized with log transformations for
all analyses, following previous trait-based studies (Stubbs
and Wilson 2004; Kraft et al. 2008).

Trait-based tests for niche-based assembly processes re-
quire knowledge of relevant niche axes and traits. For ex-
ample, if foraging differences are accentuated among co-
existing species to reduce interspecific competition, it
seems sensible to focus tests for the signature of compet-
itive exclusion (i.e., overdispersion) on key trophic traits
such as beak shape. However, the link between traits and
niche axes is not always so clear, and sets of traits often
provide information about the same or overlapping niche
axes. In our data set, functional traits were strongly pos-
itively correlated (r p 0.28–0.84), largely through their
association with overall body size. To prevent these cor-
relations from biasing analyses toward detecting only pro-
cesses associated with body size, we used ordination tech-
niques (based on a two-step principal component analysis
[PCA]) to derive independent trait axes (hereafter termed
derived trait axes; for details, see “Results”; fig. A3; app.
A).

Multiple-Niche-Axis Metrics

We used two standard metrics, FD (Petchey and Gaston
2002) and convex hull volume (CHV; Cornwell et al.
2006), both of which test concurrently for habitat filtering
and niche differentiation. The metrics FD and CHV are
generally applied to sets of multiple functional traits and,
because they test for two patterns concurrently, can be
classified as multipattern, multiple-niche–axis metrics.
Functional diversity is a measure of how dispersed a set
of species is in trait space (Petchey and Gaston 2002),
while convex hull volume is the smallest convex set in trait
space enclosing all of the species trait values within a com-
munity and is analogous to a multivariate measure of the
range of community trait values (Cornwell et al. 2006).
We selected FD and CHV because they are widely used
with presence/absence data and have been shown to have
high power to detect trait clustering (CHV) and overdis-
persion (FD) in previous community assembly simulations
(Mouchet et al. 2010; Aiba et al. 2013).

We calculated FD and CHV using all three derived trait
axes. These trait axes were standardized to have a mean
of zero and unit variance, given the absence of any a priori
weighting on the ecological importance of the axes (Vil-

léger et al. 2008). Functional diversity measures for each
community were standardized by the FD of the total spe-
cies pool so that variation in FD ranged from 0 to 1. For
both FD and CHV, results using unstandardized trait axes
were very similar to those reported here (table A8).

Another source of multipattern, multiple-niche–axis
metrics that are now widespread in community ecology
are phylogenetic analyses (Cavender-Bares et al. 2009). A
standard assumption of community phylogenetic models
is that multiple niches are phylogenetically conserved and,
thus, that co-occurring species should be more related than
expected by chance under habitat filtering but less related
under competitive exclusion (Kraft et al. 2007; but see
Mayfield and Levine 2010). To test this, we constructed a
molecular phylogeny for all species in our study com-
munity (fig. 3; see app. A for all information on genetic
extraction, sequencing, and tree-building methodology).
We assessed the phylogenetic signal in functional traits
using Blomberg’s K statistic (Blomberg et al. 2003) and
in habitat type using D (Fritz and Purvis 2012), both with
1,000 permutations. We selected the metrics mean phy-
logenetic distance (MPD) and mean nearest taxon distance
(MNTD) because they are two of the most commonly used
measures of community relatedness and have been the
subject of previous power analyses (Kraft et al. 2007).
Mean phylogenetic distance is the mean of the pairwise
phylogenetic distances between co-occurring species and
is most sensitive to tree-wide patterns of phylogenetic clus-
tering and evenness. Mean nearest taxon distance is the
mean of the phylogenetic distances separating each species
from its closest co-occurring relative and is most sensitive
to patterns of phylogenetic clustering or evenness at the
tips of the phylogeny (Webb et al. 2002; Kraft et al. 2007).

Single-Niche-Axis Metrics

We analyzed each derived trait axis individually using met-
rics we term either multipattern, single-niche axis, because
they test for both assembly patterns (clustering and ov-
erdispersion), or single-pattern, single-niche axis, because
they test for only one assembly pattern. We focused on
three multipattern, single-niche–axis metrics: (1) FD ap-
plied to a single trait axis, (2) variance (the variance in
species values within a community along a single trait
axis), and (3) range (the range in species trait values within
a community, i.e., the single-niche-axis equivalent of
CHV). Both variance and range have previously been used
predominantly as a measure of trait clustering (e.g., Stubbs
and Wilson 2004; Kraft and Ackerly 2010). We also focused
on one single-pattern, single-niche–axis metric, SDNDr,
the standard deviation of the distances between neigh-
boring species along a single trait axis, divided by the trait
range of the community. The metric SDNDr is used to
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detect only the regular spacing in species trait values pre-
dicted by competitive exclusion (Kraft and Ackerly 2010).

Community Assembly Simulations and Power Analyses

Community assembly simulations were used to assess the
power of multiple-niche-axis and single-niche-axis metrics
to detect competitive exclusion (based on limiting simi-
larity) and habitat filtering (based on trait clustering), op-
erating over multiple niche axes and across a range in the
relative importance of each process. We assembled 1,000
communities of nine species (the median species richness
for an individual survey-point community in our data set)
for each of the five scenarios of relative importance of
habitat filtering and competitive exclusion, varying from
the sole action of one process to a 50 : 50 mix in the
importance of both processes. We assembled communities
using the three uncorrelated derived trait axes generated
by the two-step PCA (see app. A; fig. A3). The body-size
trait axis was subjected to habitat filtering and limiting
similarity, the locomotory trait axis (tarsus to tail length
ratio) to habitat filtering only, and the trophic trait axis
(beak shape) to limiting similarity only. We also performed
simulations where the axes were switched so that the lo-
comotory trait axis was subjected to habitat filtering and
limiting similarity and the body-size axis to habitat filtering
only. This was done to investigate whether the distribution
of a trait’s values in the species pool had an effect on the
power of the metrics.

Simulated communities were assembled by removing
species from the pool of 41 species recorded at the study
site, using the algorithms of Kraft et al. (2007). First, the
habitat-filtering algorithm selected an optimal trait value
at random from within the observed range of each of the
traits exposed to habitat filtering; a number of species, set
by the relative importance of habitat filtering, furthest
from this optimum combination of trait values—by Eu-
clidean distance—were removed. Subsequently, the limi-
ting similarity algorithm detected the pair of species with
the smallest Euclidean distance between them along the
trait axes exposed to competition and removed one of the
pair at random, with this process repeated until the desired
local community species richness was reached. To vary the
relative importance of habitat filtering and competitive
exclusion, the number of species eliminated due to either
process was adjusted, with the 50 : 50 assembly scenario
resulting in an equal number (16) being eliminated by
each process. To enable calculation of the phylogenetic
metrics, we constructed a community phylogeny for each
simulated community by selecting, from the phylogeny for
all species at the study site, the nine species in each sim-
ulated community.

The observed value and the null model mean and stan-

dard deviation from 999 null communities were calculated
for each multiple-niche-axis and single-niche-axis metric
for each simulated community. The null model drew spe-
cies at random from the species pool while maintaining
the species richness for each community. It was not nec-
essary to use a null model that maintained species occur-
rence frequency because there was no species occurrence
frequency structure in the simulated communities inde-
pendent of that generated by the assembly algorithms we
applied. To test the power of the metrics to reject a false
null hypothesis of random assembly, we sampled (without
replacement) sets of 20 communities from the 1,000 com-
munities simulated for a given scenario of habitat filtering
to competitive exclusion. This procedure yielded 50 sets
of local communities for each of the five assembly sce-
narios. Wilcoxon signed-rank tests were then performed
on each of these 50 sets of 20 local communities, allowing
the proportion of tests rejecting the null model for a given
scenario to be recorded. The Wilcoxon signed-rank test
assessed whether the distribution of the differences be-
tween the observed, simulated local community values and
their respective null model means was shifted away from
zero. For all multipattern metrics, a two-tailed test was
used, with a shift in observed values below zero indicative
of clustering and a shift above zero of overdispersion (Kraft
et al. 2008; Kraft and Ackerly 2010). Following previous
studies (e.g., Kraft et al. 2008; Kraft and Ackerly 2010), a
one-tailed test for a shift below zero was used for SDNDr
because this single-pattern metric is designed to test only
for reduced standard deviation in neighbor distances (reg-
ular spacing). We note that using Wilcoxon signed-rank
tests to evaluate the power of the metrics at the aggregate
level of multiple individual communities is likely to yield
higher estimates of power than that obtained when testing
individually for the deviation of single communities from
the null model (Kraft and Ackerly 2010). All simulations
and metric analyses were performed in R (R Core Team
2013). See appendix A for further details of analytical tech-
niques and R code.

Tests of Bird Community Assembly across Scales

To investigate variation in habitat filtering and interspecific
competition across grain sizes, we combined communities
of the smallest grain size (0.8 ha) with neighboring com-
munities in pairs, quadruples, and eights to generate com-
munities at larger scales (1.6, 3.2, and 6.4 ha; fig. 1), while
keeping the size of the study area fixed. This approach
increases both the potential interaction distance between
individuals and the habitat heterogeneity within local com-
munities, key parameters for competition and habitat fil-
tering, respectively (Weiher et al. 2011). At each grain size,
we used the independent swap algorithm (Gotelli and
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Graves 1996) to generate a null distribution of 999 random
communities for each observed community, using the local
community # species matrix for that grain size. The in-
dependent swap null model provides a more conservative
test of assembly processes by maintaining both observed
species occurrence frequencies and local community spe-
cies richness in the null model. Again, we used a Wilcoxon
signed-rank test to assess, separately for each grain size,
whether the distribution of the differences between the
observed local community values at that grain size and
their respective null model means was shifted away from
zero. Because the signal of niche-based processes might
be masked from MPD and MNTD analyses, owing to their
assessment of pattern across the whole phylogeny, we also
tested whether individual clades were filtering into specific
habitat types. To achieve this, we grouped taxa by their
primary habitat type (forest or nonforest; see app. A) and
used the nodesig analysis in Phylocom (Webb et al. 2008)
to test whether taxa descended from each node were over-
or underrepresented in a habitat type.

An absence of trait clustering within communities at
larger spatial scales could result from an increase in habitat
heterogeneity encompassed within these communities, as
this could lead to a more dispersed functional trait set
within communities. We used PCA to generate vegetation
structure indexes from measured habitat variables and cor-
relogram and mantel tests to quantify the degree of habitat
(vegetation structure) heterogeneity across scales. We then
used least squares regression to test whether there was a
relationship at the smallest spatial scale between habitat
type and the rank of a community’s mean trait value in
the null distribution (i.e., the deviation of community
means from those expected under the null model). See
appendix A for full details of vegetation surveys and spatial
autocorrelation analysis.

Results

Functional Traits

Because standard PCA produced ambiguous niche axes
(see app. A; table A3), we used a two-step PCA in which
the first step was focused on describing candidate niche
axes separating locomotory (wing, tail, and tarsus length)
and trophic (beak length, width, and depth) traits (fig. A3;
table A4). In all further analyses of community structure,
we used the body-size, tarsus-to-tail-length-ratio, and
beak-shape axes from the two-step PCA because they are
realistic—as shown by the correlation with two axes from
the standard PCA approach—and because they also pro-
vide an index of beak shape as an additional, more inter-
pretable axis of the foraging niche. See appendix A for
exact definitions, selection methods, and justification.

Community Assembly Simulations and Power Analyses:
Multiple-Niche-Axis and Single-Niche-Axis Metrics

In the presence of a single community assembly process
(either habitat filtering or competitive exclusion), standard
trait-based multipattern, multiple-niche–axis metrics—FD
and CHV—had high power to detect the correct assembly
process (fig. 3). However, when both processes were oc-
curring (75 : 25 or 50 : 50), FD and CHV had low or very
low power to detect the dominant process or either process
and detected competition over habitat filtering in the
50 : 50 scenario. An exception was that when the ratio of
habitat filtering to competition was 25 : 75, FD and CHV
had relatively high power to detect competition as the
dominant process. Performance of FD and CHV was the
same when the trait axis (body size) exposed to both hab-
itat filtering and competition was switched with the trait
axis (locomotory traits) exposed only to habitat filtering
in the community simulation, except for the 50 : 50 case,
where for competition, FD power increased and CHV
power decreased (fig. A5). This suggests that the power of
these metrics was relatively robust to differences between
the trait axes in the initial distribution of species’ trait
values in the species pool. The multipattern, multiple-
niche–axis phylogenetic metrics—MPD and MNTD—
generally had even lower power to detect habitat filtering
and competition than the trait-based metrics (figs. 3, A5).

In contrast, the trait-based multipattern, single-niche–
axis metrics—FD, variance, and range—had high power
to detect the signature of competition at all levels of relative
importance when used on a trait axis (beak shape) on
which only competition was acting directly (figs. 4, A6).
Variance and range also had high power to detect habitat
filtering at all levels of its relative importance when it was
the only process acting directly on body size (fig. 4). How-
ever, these metrics were not as successful in detecting the
signature of habitat filtering when it was the only process
acting directly on locomotory trait structure (fig. A6).

Multipattern, single-niche–axis metrics also improved
on multipattern, multiple-niche–axis metrics by more of-
ten detecting the dominant niche-based process when
multiple processes were active on a single-niche axis (body
size; figs. A5, A6). However, the main difficulty for mul-
tipattern, single-niche–axis metrics also arose when there
was the combination of habitat filtering and competition
acting directly on the same niche axis, as under these sce-
narios, FD, variance, and range were often unable to reject
the random assembly null model (figs. 4, A6). In addition,
FD and variance (for body size; fig. 4) and variance and
range (for locomotory traits; fig. A6) detected regular spac-
ing when competitive exclusion had not acted directly on
the axis being tested but was the sole process active in
community assembly (i.e., acting on other trait axes).
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Table 1: Results of multipattern, multiple-niche–axis trait and phylogenetic tests for habitat filtering and
interspecific competition using functional diversity (FD), convex hull volume (CHV), mean phylogenetic
distance (MPD), and mean nearest taxon distance (MNTD) at four nested spatial scales (grain sizes)

Trait-based metric Phylogeny-based metric

Spatial scale (ha) FD P CHV P MPD P MNTD P

.8 .125 � .11 .26 .014 � .11 .06 .130 � .10 .38 .030 � .11 .91
1.6 .002 � .15 .88 �.130 � .13 .16 .000 � .15 .80 �.140 � .17 .38
3.2 .010 � .22 .96 �.175 � .20 .26 .050 � .20 .52 .050 � .42 .73
6.4 .006 � .43 1.00 .088 � .40 .36 .140 � .24 .43 .050 � .42 .91

Note: Values are mean standard effect sizes (SES) � SE (SES calculated as observed value minus null model mean, divided

by SD of the null model distribution, averaged across all observed communities at each spatial scale). Positive SES indicates

even spacing; negative SES indicates clustering relative to the expected null model trait spacing or relatedness of the community.

The single-pattern, single-niche–axis metric, SDNDr,
had low power to detect competition on beak shape, the
axis on which only competition was acting directly, but
had higher power to detect competition on the body-size
axis (figs. 4, A6). However, SDNDr was also sensitive to
habitat filtering on all three trait axes.

Tests of Bird Community Assembly across Scales

Multiple-Niche-Axis Tests. For trait-based metrics, we
found no significant deviation from the random assembly
null model expectation for bird community structure at
any grain size of the local community for either FD or
CHV (table 1; fig. 5). Thus, according to these metrics,
community structure appeared to be purely stochastic. The
only pattern that approached significance was of reduced
volume (i.e., trait clustering) in observed CHV values at
the 0.8-ha scale (table 1).

When we tested the assumption of phylogenetic signal
in traits, we found that species body size, beak shape
(trophic trait), and tarsus to tail length ratio (locomotory
trait) showed significantly more phylogenetic signal than
expected if the distribution of trait values were random
with respect to phylogeny but were less conserved than
expected from a Brownian motion model of trait evolution
(fig. 2; table A6). Phylogenetic signal in primary habitat
type was not significantly different from that expected un-
der either a random, nonphylogenetic model (estimated
D p 0.65, P p .1) or a Brownian motion model (esti-
mated D p 0.65, P p .09). When we focused on com-
munity phylogenetic structure, we found that observed
structure was not significantly different from the null
model at any grain size for either MNTD or MPD (table
1). Some habitat filtering was evident, at least at the study-
site scale, as the node at the base of the Synallaxis and
Asthenes clade was significantly overrepresented in non-
forest habitat (fig. 2). However, this was the only node
significantly over- or underrepresented in any habitat type.

Single-Niche-Axis Tests. In contrast to multiple-niche-axis
metrics, single-niche-axis approaches revealed complex
nonrandom patterns of trait values within communities
at smaller grain sizes (table 2; fig. 5). There were signals
of both clustering and regular spacing in locomotory traits
in communities at small spatial scales (0.8–1.6 ha) and the
signal of regular spacing in body size and trophic traits
(beak shape) at the smallest spatial scale (0.8 ha). The
multipattern, single-niche–axis metrics—variance and
range—detected clustering in species trait values for tarsus
to tail length ratio, with significantly reduced values for
tarsus to tail length ratio in observed communities at the
0.8-ha scale. Beak shape and body size showed no signif-
icant reduction in variance or range at any spatial scale.
The single-pattern, single-niche–axis metric, SDNDr, de-
tected a pattern of regular spacing of species trait values
for body size, tarsus to tail length ratio, and beak shape,
as the observed community values for these traits were
significantly shifted below the null model expectation
within communities at the 0.8-ha scale. At the 1.6-ha scale,
only tarsus to tail length ratio showed significant regular
spacing. No traits showed clustering or regular spacing at
larger spatial scales.

Further Tests of Habitat Filtering. The first principal com-
ponent (habitat PC1) from the habitat PCA explained 71%
of the variation in habitat data and was interpreted as an
index of vegetation structure (table A7); increasing values
are associated with more forested habitat, including in-
creased maximum canopy height and tree cover and de-
creased grass and shrub cover. There was spatial autocor-
relation in vegetation structure across 0.8-ha survey sites
(Mantel test: r p 0.23, P ! .001, N p 72, 10,000 per-
mutations). However, this effect decayed to zero at dis-
tances greater than those separating neighboring 0.8-ha
survey points (fig. A4), indicative of increased habitat het-
erogeneity for communities at larger spatial scales. At the
0.8-ha scale, there was a positive relationship between the
vegetation structure (log habitat PC1) and the rank in the
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Hemispingus atropileus
Hemispingus xanthophthalmus
Chamaeza mollissima
Scytalopus parvirostris
Grallaricula ferrugineipectus
Grallaria erythroleuca
Xiphocolaptes promeropirhynchus
Margarornis squamiger
Pseudocolaptes boissonneautii
Synallaxis azarae
Asthenes helleri
Asthenes urubambensis
Asthenes maculicauda
Hemitriccus granadensis
Nephelomyias ochraceiventris
Pyrrhomyias cinnamomeus
Mecocerculus stictopterus
Mecocerculus leucophrys
Anairetes parulus
Myiarchus tuberculifer
Myiodynastes chrysocephalus
Ochthoeca pulchella
Ochthoeca rufipectoralis
Knipolegus aterrimus
Myiotheretes fuscorufus
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Figure 2: Maximum clade credibility tree inferred from analysis of mitochondrial DNA regions for all study species, labeled as occurring
primarily in forest (gray names) or grassland and shrubby vegetation (black names). The diamond indicates the only node significantly
overrepresented by a particular habitat (nonforest). The size of data circles represents the value of scaled traits: trophic traits (principal
component [PC] 2; beak shape), locomotory traits (PC2; tarsus to tail length ratio), and body size (PC1). Nodes with squares indicate
posterior probability (PP) support 195%; other PP values are given above nodes. One asterisk denotes species lacking genetic data but
placed according to sequences from closely related substitute species (Megarynchus pitangua and Grallaria ruficapilla, respectively). Two
asterisks denote species inserted on the basis of published phylogenies, with varying branch lengths (see “Methods”). Scale bar indicates
sequence divergence. This maximum clade credibility tree, excluding the two species inserted based on published phylogenies, is available
from TreeBASE: http://purl.org/phylo/treebase/phylows/study/TB2:S16064.

null distribution of community mean tarsus to tail length
ratios (b p 1.94, r2 p 0.25, P ! .001, N p 72). This
shows that tarsus to tail length ratios were higher than
expected by chance for species in forested sites and lower
than expected for those in nonforest sites.

Discussion

Disentangling Multiple Assembly Processes

Our simulation analyses show that multiple-niche-axis phy-
logenetic and trait–based metrics have low power to detect
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Table 2: Results of multipattern, single-niche–axis and single-pattern, single-niche–axis trait metric tests for habitat filtering
and interspecific competition across four nested spatial scales

FD Variance Range SDNDr

Trait, spatial scale (ha) SES � SE P SES � SE P SES � SE P SES � SE P

Body size (PC1):
.8 �.050 � .10 .11 .032 � .13 .28 .042 � .12 .70 �.012 � .13 !.05
1.6 �.111 � .20 .77 �.013 � .18 .96 �.024 � .17 .87 �.033 � .17 .48
3.2 �.196 � .18 .10 �.011 � .24 .83 .114 � .23 .42 .124 � .21 .86
6.4 �.127 � .31 1.00 �.039 � .44 .82 �.147 � .44 .82 �.157 � .33 .46

Trophic traits (PC2):a

.8 �.142 � .15 .82 �.115 � .14 .78 �.166 � .14 .76 �.235 � .13 !.05
1.6 �.077 � .22 .65 �.114 � .18 .88 �.079 � .19 .58 �.069 � .20 .15
3.2 �.126 � .30 .47 �.059 � .30 .93 �.067 � .29 .93 �.120 � .25 .25
6.4 �.094 � .28 .16 �.069 � .40 .65 �.087 � .29 .25 .004 � .31 .33

Locomotory traits (PC2):b

.8 �.138 � .11 .28 �.085 � .10 !.01 �.123 � .10 !.05 �.191 � .08 !.01
1.6 �.159 � .16 .17 �.065 � .15 .30 �.098 � .14 .46 �.144 � .13 !.05
3.2 �.169 � .27 .58 �.034 � .23 .67 �.093 � .23 .67 �.196 � .17 .11
6.4 �.034 � .41 .73 .043 � .33 .65 �.030 � .32 .65 �.171 � .25 .25

Note: Values are mean standard effect sizes (SES) � SE (SES calculated as observed value minus null model mean, divided by SD of the null

model distribution, averaged across all observed communities at each spatial scale). FD p functional diversity; SDNDr p standard deviation in

neighbor distances divided by range. P values are for Wilcoxon signed-rank tests.
a Beak shape.
b Tarsus to tail length ratio.

competition and habitat filtering when these processes act
simultaneously, even when one process is dominant (fig. 3).
We also show that, even when a combination of multiple-
niche-axis metrics is used, these methods can oversimplify
assembly dynamics by detecting only a single niche-based
process when multiple processes co-occur. This problem can
arise when either subordinate processes are overlooked or
multiple processes are equally influential, in both cases ex-
aggerating the impression that assembly processes occur in
isolation rather than in combination.

These findings cast doubt on numerous trait-based anal-
yses using multiple-niche-axis metrics to detect processes
acting simultaneously. The multiple-niche-axis approach
is often supported with reference to previous simulation
studies, several of which have shown FD, CHV, and abun-
dance-weighted multiple-niche-axis trait metrics (e.g.,
Rao’s quadratic entropy) to be powerful metrics for de-
tecting niche-based processes. However, these studies ei-
ther (1) evaluated trait metrics when only limiting simi-
larity or habitat filtering was present (e.g., Mouchet et al.
2010), (2) focused niche-based processes on generating
only trait clustering within local communities (Münke-
müller et al. 2012), (3) focused community assembly on
a single trait axis (Mason et al. 2013), or (4) applied as-
sembly processes equally across all trait axes (Mouchet et
al. 2010; Münkemüller et al. 2012; Aiba et al. 2013). There-
fore, previous studies do not address many of the cases in
community assembly where multiple processes differ in

their relative importance across multiple niche axes (e.g.,
Spasojevic and Suding 2012), as seems likely when testing
for assembly processes across spatial scales.

When we applied multiple-niche-axis-trait (FD and
CHV) and phylogenetic (MPD and MNTD) metrics to
our observed study communities, none of them detected
significant deviations from the random assembly null
model expectations (table 1; fig. 5). Although the absence
of any phylogenetic or trait clustering may be relatively
uninformative, as the influence of habitat filtering is often
assumed to be weak at these smaller scales (0.8–6.4 ha),
the lack of evidence for overdispersion of functional traits
or phylogenetic relationships is surprising, given that spe-
cies interactions are expected to strengthen as spatial scale
decreases (Swenson et al. 2007; Cavender-Bares et al.
2009). Nonetheless, an absence of both clustering and ov-
erdispersion in traits and phylogenies has been reported
fairly widely in plants and for some animal communities
at local scales and is typically interpreted as evidence for
a neutral model of community assembly (e.g., Gómez et
al. 2010; Thompson et al. 2010).

A strongly contrasting set of patterns was detected by
single-niche-axis metrics (FD, variance, range, and SDNDr).
Simulations revealed that these metrics are able to detect
the action of both competition and habitat filtering across
a wide range in the relative importance of either process
(fig. 4). In accordance, single-niche-axis metrics also iden-
tified significant clustering and regular spacing of traits in
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Figure 3: Multiple-niche-axis metrics: the power of multipattern, phylogenetic, and functional trait metrics—mean phylogenetic distance
(MPD), mean nearest taxon distance (MNTD), functional diversity (FD), and convex hull volume (CHV)—to reject the random community
assembly null model in favor of either habitat filtering or competitive exclusion. Assembly models were tested under five scenarios ranging
in the relative importance of habitat filtering and competitive exclusion from the sole action of one process to a 50 : 50 mixing of both
processes. Each metric was calculated using multiple niche axes, and each species is a composite of three traits: body size, locomotory traits,
and beak traits. During community assembly simulations, body size was subjected directly to habitat filtering and competitive exclusion,
locomotory traits to habitat filtering only, and beak shape to competitive exclusion only. See “Methods” for further details of trait and
community simulations, null models, and statistical tests.

observed communities (table 2; fig. 5). These nonrandom
patterns reject neutral assembly models and suggest instead
that habitat filtering and interspecific competition act si-
multaneously on locomotory traits, while interspecific com-
petition acts on body size and beak shape, to structure bird
communities at small grain sizes (0.8–1.6 ha).

Taken together, these results confirm previous sugges-
tions that multiple-niche-axis metrics—because they mea-
sure the net effect of different assembly processes—may
be ineffective at differentiating niche-based processes from
neutral dynamics because multiple, opposing niche-based
processes can cancel each other out (Kraft et al. 2007;

Swenson and Enquist 2009; Weiher et al. 2011). Moreover,
we have shown that this is often the case even when either
habitat filtering or interspecific competition plays a dom-
inant role in community assembly. Finally, multiple-niche-
axis metrics generally detected only a single niche-based
process, even when two processes were equally prevalent.
Thus, multiniche-axis metrics may generate misleading
evidence of either neutrality or the partitioning of assembly
processes across scales. In contrast, because they do not
integrate processes operating on separate niche axes, sin-
gle-niche-axis metrics are less likely to combine the signal
of multiple processes and thus more likely to detect the
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Figure 4: Single-niche-axis metrics: the power of multipattern and single-pattern trait metrics, calculated using only a single-niche axis, to
reject the random assembly null model in favor of either habitat filtering or competitive exclusion. Assembly models were tested under five
scenarios ranging in the relative importance of habitat filtering and competitive exclusion from the sole action of one process to a 50 : 50
mixing of both processes. Functional diversity (FD) and standard deviation in neighbor distances are divided by range (SDNDr). Each
species is a composite of three traits: body size, locomotory traits, and beak traits. During community assembly, the locomotory trait axis
was subjected directly to habitat filtering and competitive exclusion, body size to habitat filtering only, and beak shape to competitive
exclusion only. A single-pattern metric, SDNDr is focused on only the detection of competitive exclusion, and so a one-tailed test was used.
See “Methods” for further details of trait and community simulations, null models, and statistical tests.

full set of processes present in community assembly at a
given scale.

Implications for Tests of Community Assembly

Our findings highlight problems with multiple-niche-axis-
trait and phylogenetic analytical approaches but do not
imply that such approaches should be abandoned. Mul-
tiaxis metrics, as confirmed by our simulations, can in
some cases provide an integrated assessment of whether

any particular niche-based assembly process is dominant
(e.g., Petchey et al. 2007). They also make fewer assump-
tions about which trait axes are relevant to community
assembly and can provide links between community as-
sembly and ecosystem function (Cadotte et al. 2009;
Thompson et al. 2010; but see Butterfield and Suding
2013), while phylogenetic approaches allow for analyses
to be conducted when potentially important traits are dif-
ficult to measure (Cavender-Bares et al. 2009). Given these
advantages, an important target for future research is to
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Figure 5: a, Observed community functional diversity values (red) do not differ significantly from the distribution of null community
values (gray) at the 0.8-ha scale; mean (solid line) and 95% confidence interval (dashed lines). b, No multipattern, multiple-niche-axis
phylogenetic or trait-based test rejects the null model at any spatial scales (grain sizes 0.8–6.4 ha). c, The distribution of a single-pattern,
single-niche–axis metric (SDNDr) is significantly shifted below the null expectation mean, suggesting that beak shapes are more regularly
spaced than expected under random assembly at the 0.8-ha scale. Only one interval is indicated because the test is one-tailed. d, Testing
individual trait axes using single-niche-axis metrics yielded significant deviation from the null expectation, consistent with habitat filtering
and competition structuring communities at smaller spatial scales (grain sizes 0.8–6.4 ha).

investigate whether the sensitivity of such multipattern,
multiple-niche–axis metrics can be increased, for example,
by systematically adjusting the weighting of a trait to test
for its influence on the overall trait pattern and developing
metrics more targeted to detecting a single niche-based
process.

Single-niche-axis metrics, because they do not integrate
processes operating on separate niche axes, aid interpre-

tation of the action of niche-based processes on specific
niche axes, thus enabling a more detailed description of
how niche-based processes influence community assembly.
An inherent challenge of single-niche-axis methods is to
approximate niche axes from trait data, and we have shown
that this is not always achievable using the classic approach
of a PCA, as this may combine information from multiple
niche axes on a single principal component axis. As an
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alternative, we introduce a technique of performing sep-
arate PCAs on groups of traits according to their acknowl-
edged relevance to particular niche axes (see app. A; fig.
A3). The main advantage of this approach is that specific
tests of assembly processes can be focused exclusively on
independent niche dimensions identified by a priori hy-
potheses. For example, species interactions can be tested
on trophic traits separately from locomotory traits, as some
of the latter are not expected to mediate interspecific com-
petition and indeed may blur the signal of competitive
exclusion.

Our results indicate that single-niche-axis metrics can
struggle in two different scenarios. First, the power of
multipattern metrics is reduced when multiple processes
act on a single-niche axis. Second, both multi- and single-
pattern, single-niche-axis metrics can sometimes wrongly
detect the presence of a process when that process is absent
on the trait axis being tested but strongly prevalent on
another axis, even when the axes are uncorrelated (fig. 4).
Similarly, the lower power of SDNDr to detect regular
spacing in our trophic trait (beak shape) suggests that some
single-pattern metrics may have lower power for trait axes
with lower variance, where perhaps assembly patterns are
weaker than on axes with higher variance. Thus, we rec-
ommend the complementary use of both multipattern and
single-pattern metrics focused on single-niche axes, as this
can enable detection of insensitivity or error in the metrics.
We discourage the use of multipattern metrics such as
variance and range, which are sensitive to both clustering
and overdispersion, in single-pattern, one-tailed hypoth-
esis tests, as has been advocated previously (Kraft and
Ackerly 2010; Aiba et al. 2013). We have also shown that
SDNDr, a single-pattern metric for competition, is sen-
sitive to habitat filtering and therefore should be inter-
preted cautiously if other metrics detect clustering on the
same axis. Further research is required to develop metrics
that are sensitive to only one of either clustering or ov-
erdispersion and that are also robust to differences in var-
iance among traits.

The study of community assembly processes has ad-
vanced rapidly in recent decades, driven in part by the
development of sophisticated analytical techniques (Cav-
ender-Bares et al. 2009). In general, the tendency has been
to develop methods for pooling together as much infor-
mation as possible, with recent studies even advocating
the combined analysis of multiple trait and phylogenetic
axes (Cadotte et al. 2013). While such all-inclusive ap-
proaches have a number of advantages, our analyses in-
dicate that they can obscure the nuances of community
assembly over time and space. This finding supports a
recent countertrend in community ecology that proposes
not the integration of data sets but their subdivision into
niche axes before analysis (e.g., Spasojevic and Suding

2012). We suggest that studies of community assembly
need to consider both inclusive and more targeted ap-
proaches to tease apart the influence of multiple assembly
processes on community structure.

Implications for Bird Community Assembly

The regular spacing detected by single-niche-axis metrics
in functional traits associated with locomotion and for-
aging is consistent with interspecific competition at the
0.8–1.6-ha scale and implies that bird communities at these
grain sizes are structured by interspecific interactions such
as competitive exclusion through direct interspecific ter-
ritory defense or indirect competition for resources. Al-
though the evidence we present aligns closely with long-
standing ideas about the importance of beak differences
(Hutchinson 1959; Schoener 1965) and foraging micro-
habitat divergence (MacArthur 1958; MacArthur and Lev-
ins 1967) in promoting co-occurrence, it suggests that the
spatial scale of these interactions can be highly localized.
This result contradicts recent suggestions that for mobile
species such as birds that are not forced to interact as
intimately with their neighbors as sessile organisms, the
importance of niche processes may be low at smaller local
scales (Weiher et al. 2011; Harmon-Threatt and Ackerly
2013). One possible reason for the absence of a signal of
interspecific competition at larger grain sizes is that the
size of individual territories for many of our study species
is likely to be only 1–2 ha (Kikuchi 2009), meaning that
competing species can potentially co-occur in larger com-
munities without coming into direct contact, thus weak-
ening the signal of competitive exclusion at increasing
grain sizes. The reduced likelihood of direct competition
at larger grain sizes may also explain why Gómez et al.
(2010) found no evidence of competition structuring Neo-
tropical antbird communities in plots of 100 ha, as the
mean territory size of their study species is only ∼5 ha
(Terborgh et al. 1990). Also, by focusing on a single family,
as opposed to on all insectivorous bird species in a com-
munity, Gómez et al. (2010) may have excluded important
interspecific competitive interactions.

Single-niche-axis metrics revealed not only regular spac-
ing but also clustering in locomotory traits, suggesting
habitat filtering among communities at small grain sizes
(0.8 ha). The positive relationship we detected between
the vegetation structure and the mean locomotory trait
(tarsus to tail length ratio) values of 0.8-ha communities
suggests that habitat filtering is related to traits associated
with foraging maneuver and substrate use and, specifically,
the consistent differences between traits in forest versus
nonforest sites. This relationship between habitat type and
community mean tarsus to tail length ratio also suggests
that trait clustering is likely not due to a competitive hi-
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erarchy in these locomotory traits (Mayfield and Levine
2010; HilleRisLambers et al. 2012). We found no evidence
of trait clustering above a grain size of 0.8 ha. This is likely
because local assemblages of increased grain size (1.6–6.4
ha) encompassed greater habitat heterogeneity (both forest
and nonforest vegetations) and thus contained sets of spe-
cies with both higher and lower than expected tarsus to
tail length ratios, weakening the signal of habitat filtering.

Community ecology studies generally predict that hab-
itat filtering will be a dominant influence on community
assembly at larger grain sizes than interspecific competi-
tion because habitat features vary over distances larger
than those over which individuals interact (Swenson et al.
2007; Kraft and Ackerly 2010; Smith et al. 2013), but most
previous studies have focused on sessile taxa (Vamosi et
al. 2009). We found that this relationship was reversed in
our study, with both habitat filtering and interspecific
competition acting at small grain sizes and the grain size
of interspecific competition (1.6 ha) extending beyond that
of habitat filtering (0.8 ha). We suggest that across small
to intermediate spatial extents, this pattern may be rela-
tively common in mobile taxa that are able to interact
through either direct interspecific territory defense or in-
direct competition for resources across the same or greater
distances than variation in habitat features.

We have interpreted the regular spacing of functional
traits as evidence of competitive exclusion and clustering
as evidence of habitat filtering, following many previous
studies. Other processes may, however, contribute to these
patterns. For example, social information gathering could
influence spacing between conspecifics and even hetero-
specifics, potentially shaping community structure (Sep-
pänen et al. 2007). This process seems unlikely to lead to
pervasive overdispersion or even clustering in functional
traits at the scales we detect, particularly as most of our
study lineages hold year-round territories. In addition, in-
traspecific variation could affect community dynamics by
altering species’ niche widths (Bolnick et al. 2011). Al-
though this may lead to changes in patterns of niche over-
lap, the majority of trait variation was among species and
not individuals (table A2), and we suspect that intraspecific
variation is unlikely to drive the patterns we have detected.

Our results add to a growing body of work seeking to
understand the role of deterministic and stochastic pro-
cesses across scales (Levin 1992; Chase and Myers 2011;
Chave 2013). The patterns we detect are consistent with
the idea that niche-based processes minimize spatial over-
laps between species sharing similar ecologies, particularly
in tropical systems where the ranges of ecological com-
petitors often abut (Terborgh and Weske 1975; Jankowski
et al. 2010; Pigot and Tobias 2013). Further research is
needed to determine whether similar processes structure
avian communities in temperate systems where many spe-

cies hold territories only during the breeding season, po-
tentially altering the intensity and spatial scale of com-
petition (Gotelli et al. 2010).
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