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Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic

evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification

have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although

behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution

contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of

behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate

shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned

songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation

and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa

with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts

in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental

modes among lineages.
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The tempo of speciation and phenotypic evolution varies dramat-

ically among lineages. Some clades have undergone rapid specia-

tion or phenotypic evolution, while others have diversified slowly

(Simpson 1944; Harmon et al. 2003; Simões et al. 2016). We may

expect lineages diversifying rapidly in phenotypic dimensions to

also exhibit accelerated speciation rates if phenotypic divergence

is linked to ecological divergence, assortative mating, and repro-

ductive isolation (Ricklefs 2004; Rundle and Nosil 2005; Ingram

2011). Alternatively, rates of speciation and phenotypic evolution

can be decoupled in “cryptic” species complexes or nonadap-

tive radiations (Gittenberger 1991; Kozak et al. 2006; Rundell

and Price 2009). Previous macroevolutionary studies have found

that rates of phenotypic evolution and speciation are correlated in

some clades or traits (Rabosky and Adams 2012; Rabosky et al.

2013; Puttick et al. 2015; Price et al. 2016; Ramı́rez-Barahona

et al. 2016) and uncorrelated in others (Adams et al. 2009;

Venditti et al. 2012; Burbrink et al. 2012; Bapst et al. 2012;

Zelditch et al. 2015; Lee et al. 2016), suggesting that both of

these patterns may be widespread in nature.

To date, the debate has centered mainly on morphologi-

cal traits, with behavioral and cultural traits receiving compar-

atively little attention. Yet behavioral traits are thought to play an
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important role in evolutionary diversification (Plotkin 1988;

Wcislo 1989; Huey et al 2003; Duckworth 2009), particularly

as they often function in mate choice and reproductive isolation

(Andersson 1994; Catchpole and Slater 2008). Thus, theoretically,

divergence in behavioral phenotypes may have a disproportion-

ate effect as prezygotic barriers to gene flow, ultimately leading

to speciation (West-Eberhard 1983; Wilkins et al. 2013). Devel-

opmental or mechanistic changes underlying the production or

reception of behavioral traits involved in mate choice have been

associated with variation in the tempo of speciation in certain

systems (Carlson et al. 2011; Maia et al. 2013), but the extent

to which rates of behavioral evolution and speciation are linked

remains largely unknown.

Rates of behavioral evolution may vary among lineages due

to numerous factors, including differences in the strength and

mode of sexual selection (Ritchie 2007; Kraaijeveld et al. 2011;

Seddon et al. 2013; Servedio and Bürger 2015), and variation

in developmental processes (Lovette et al. 2002; Pfennig et al.

2010; Moczek et al. 2011), such as the prevalence of phenotypic

plasticity and the degree to which behaviors are learned or innate.

Learned traits are socially transmitted and are therefore subject to

imprecise copying with reduced effective generation times, which

can quickly generate novel phenotypes, accelerate rates of pheno-

typic evolution, and promote population divergence (Mundinger

1980; Cavalli-Sforza and Feldman 1981; Baldwin 1986; Paenke

et al. 2007; Pfennig et al. 2010). Learning, however, may also im-

pede rates of phenotypic evolution and population divergence if

predispositions to learn one particular sexual signal over another

are weak (Olofsson et al. 2011). Empirical examples of pheno-

typic plasticity reducing gene flow (Pfennig and Murphy 2002;

Haavie et al. 2004; Dukas 2004; Huber et al. 2007) and pro-

moting population connectivity (Grant and Grant 1997; Hughes

et al. 1999; Crispo and Chapman 2008) illustrate the context-

dependent effects of plasticity and learning on rates of phenotypic

evolution and speciation (Pfennig et al. 2010; Verzijden et al.

2012).

Bird song has become a model system for comparative stud-

ies of behavioral evolution and speciation (Slabbekoorn and Smith

2002; Wilkins et al. 2013) as well as of variation in learning and

cognitive plasticity (Brenowitz and Beecher 2005). Within the

avian order that includes roughly half of all birds (Passeriformes),

vocal learning predominates in the largest suborder (Passeri or

“oscines”) but not in its sister clade (Tyranni or “suboscines”;

Beecher and Brenowitz 2005). Despite long-standing interest in

the potential role of song in passerine diversification (Fitzpatrick

1988; Baptista and Trail 1992), we know little about how vocal

evolution, and in particular the degree of cultural transmission,

influences macroevolutionary rates of speciation, rates of song

evolution, and possible associations between these processes at

deeper evolutionary time scales.

To explore this issue, we quantify macroevolutionary pat-

terns of avian vocal evolution and speciation in two large, di-

verse families of Neotropical passerines: the tanagers (Thraup-

idae) and the ovenbirds and woodcreepers (Furnariidae). These

families are geographically codistributed and highly diverse, to-

gether comprising �10% of all passerine birds. Thraupids are

oscines that learn their songs (Isler and Isler 1999), whereas

furnariids are tracheophone suboscines that develop vocal dis-

plays without conspecific tutors (Tobias et al. 2012; Touch-

ton et al. 2014). Leveraging a large-scale comparative dataset

of these two clades, we address three questions regarding the

macroevolutionary dynamics of avian vocalizations and diver-

sification: (1) are rates of speciation associated with rates of

song evolution; (2) does vocal learning affect macroevolution-

ary associations between rates of speciation and vocal evolu-

tion; and (3) do rates of song evolution vary among avian lin-

eages that differ in the degree of vocal learning involved in song

development?

Methods
SPECIES AND CHARACTER SAMPLING

We gathered vocalization data from 4474 recordings of 581

species of tanagers and ovenbirds. The methods used to collect

these data are described in detail elsewhere (thraupids: Mason

et al. 2014; Mason and Burns 2015; furnariids: Tobias et al. 2014).

We analyzed 2648 songs of 305 species of tanagers (mean num-

ber of songs ± standard deviation species = 8.68 ± 7.32) and

1826 songs of 276 species of ovenbirds (6.61 ± 5.36). These

two datasets shared eight vocal characters, including minimum

frequency, maximum frequency, peak frequency, song frequency

range, note count, note rate, song length, and vocal performance

(i.e., residual values extracted from a linear model comparing

song frequency range and note rate sensu Podos 2001). Because

many vocal characters are correlated with body size in these taxa

(Mason and Burns 2015), we acquired body mass data (Dunning

2007) and tested each character for a correlation with mass us-

ing the Pagel’s λ model within a phylogenetic generalized least

squares framework (Grafen 1989; Harvey and Pagel 1991; Martins

and Garland 1991; Freckleton et al. 2002). We found correlations

between six out of eight vocal characters and body mass (Sup-

plementary Table S1). For those characters correlated with mass,

we extracted residuals while accounting for phylogenetic nonin-

dependence among species for subsequent comparative analyses

(Revell 2009).

We also performed a phylogenetic principal component anal-

ysis (pPCA) on scaled data (mean = 0 and standard deviation =
1 for each character) using the Pagel’s λ model (Revell 2009;

Supplementary Table S2). A recent study raised concerns that

pPCA analyses can introduce a spurious pattern of decreasing
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evolutionary rates through time in highly dimensional datasets

(Uyeda et al. 2015). However, we note that these statistical arti-

facts appear most pronounced when pPCA analyses are performed

under a Brownian motion model that deviates substantially from

true underlying evolutionary processes and when only the first

few components axes are considered (Uyeda et al. 2015). Here,

we use the Pagel’s λ model to generate pPCA axes and examine

patterns among six pPCA axes, totaling 95% of the total pheno-

typic variance. Nonetheless, with the statistical biases of pPCA

axes and interpretability in mind, we focus on downstream com-

parative analyses of individual song characters in the main text,

but also present results with pPCA axes in the supplementary

materials.

DIVERSIFICATION ANALYSES

Both Thrapuidae and Furnariidae have robust, comprehensive,

multilocus phylogenies readily available (Derryberry et al. 2011;

Burns et al. 2014). We built a supertree of tanagers and ovenbirds

by combining maximum clade credibility trees from Burns et al.

(2014) and Derryberry et al. (2011) using functions from the APE

package (Paradis et al. 2004). We used the Jetz et al. (2012) phy-

logeny to calibrate the age of the node uniting Thrapuidae and

Furnariidae. We used Bayesian Analyses of Macroevolutionary

Mixtures (BAMM v2.5.0; Rabosky 2014; Rabosky et al. 2014;

Shi and Rabosky 2015) to assess evidence for rate heterogeneity

in speciation and rates of trait evolution for each of the eight vo-

cal characters considered here (scaled to mean = 0 and standard

deviation = 1) and the pPCA axes. For our speciation rate analy-

sis, we accounted for incomplete taxonomic sampling by setting

the globalSamplingFraction parameter equal to 581 out of 677

total taxa (375 thraupids + 302 furnariids) in accordance with

current taxonomies (Clements et al. 2015). We set the poisson-

RatePrior to 0.5 and note that while concerns have been raised

regarding the independence of posterior distributions from prior

settings within BAMM (Moore et al. 2016), recent versions of

BAMM (� v2.5) generate posterior distributions for the number

of inferred rate shifts that are largely independent of prior param-

eter settings (http://bamm-project.org/prior.html). The concerns

raised by Moore et al. (2016) are therefore unlikely to affect the

analyses performed here that were conducted with the most cur-

rent working version of BAMM. For each BAMM analysis, we

ran four separate metropolis-coupled MCMC chains with a tem-

perature setting of deltaT = 0.01 and swapPeriod = 1000 for

106 generations and discarded the first 105 generations as burn-

in. We confirmed that effective sample sizes of log-likelihoods,

evolutionary rate parameters, and the number of processes all

exceeded 300 using the CODA package (Plummer et al. 2006).

We also visually inspected log-likelihood scores and the num-

ber of evolutionary rate regimes to confirm MCMC runs had

converged.

We summarized the output from each BAMM analysis us-

ing BAMMtools v2.1 (Rabosky et al. 2014). We calculated the

posterior probability associated with each possible number of evo-

lutionary rate shifts for each trait. For each analysis, we extracted

the credible set of rate shifts using a threshold of 20 Bayes Fac-

tors, and visualized the set of rate shifts with the highest posterior

probability. We used Structured Rate Permutations on Phyloge-

nies (STRAPP; Rabosky and Huang 2015) within BAMMtools

to test for monotonic relationships between rates of speciation

(rather than diversification, which requires estimating extinc-

tion as well as speciation) and rates of trait evolution. Briefly,

STRAPP first requires speciation rates to be estimated with no

knowledge of character states, as described above. Then, a test

statistic (i.e., Spearman’s rank correlation, or ρ) is computed that

quantifies the association between speciation rate estimates and

trait evolution rate estimates at the tips of the tree. Finally, the

value of the test statistic is compared to a null distribution that

is created by structured permutations of evolutionary rates across

the tree, which accounts for the nested inheritance of rate shifts

from “parent” to “offspring” lineages (Rabosky and Huang 2015).

Thus, we first obtained instantaneous estimates of rate evolu-

tion for each tip using the getTipRates() function in BAMM and

took the mean rate across the posterior for each vocal character

and principal component axis. We then calculated Spearman’s

rank correlation coefficient and performed a one-tailed statisti-

cal test for positive correlations between estimated speciation

rates and rates of trait evolution for all eight vocal characters

and pPC1–pPC6. We visualized associations between speciation

rates and rates of trait evolution using scatterplots and plotted

loess-smoothed regression lines to visualize trends for significant,

nonparametric associations. Finally, we performed the BAMM

pipeline on the combined dataset of thraupids and furnariids as

well as on each family independently to determine if vocal learn-

ing influences associations between rates of speciation and vocal

evolution.

To test for clade-specific differences in rates of vocal evo-

lution, we quantified phenotypic evolutionary rates (after con-

trolling for correlations with body mass when present) via a

multivariate method that leverages the evolutionary rate matrix

(Adams 2014). Rather than scaling characters as we did for the

BAMM analysis, we log transformed characters that had fre-

quency as units (i.e., minimum frequency, maximum frequency,

peak frequency, and song frequency range) in order to account

for differences in scale between characters while maintaining in-

terpretability, as suggested by previous studies (Felsenstein 1985;

O’Meara et al. 2006; Adams 2013). Next, we calculated mul-

tivariate evolutionary rate estimates for thraupids (σ2
Thraupidae)

and furnariids (σ2
Furnariidae). We then calculated the ratio between

these two rates, which serves as a summary statistic that is com-

pared to a null distribution of possible rates simulated under the

7 8 8 EVOLUTION MARCH 2017

http://bamm-project.org/prior.html


BRIEF COMMUNICATIONS

assumption that there is a single multivariate evolutionary rate for

both thraupids and furnariids (Adams 2014).

We also used two jackknifing strategies to test whether es-

timates of multivariate evolutionary rates based on the Adams

(2014) method were biased by certain taxa. First, we performed

100 jackknife iterations in which we randomly removed 10% of

the tips from both Thraupidae (30 tips removed) and Furnari-

idae (27 tips removed). We then recalculated the ratio of mul-

tivariate evolutionary rates between Thraupidae and Furnariidae

(σ2
Thraupidae/σ2

Furnariidae) and calculated the mean as well as the

approximate 95% confidence intervals of the resulting set of sum-

mary statistics. Second, to determine if taxa that exhibited acceler-

ated speciation rates affected multivariate macroevolutionary rate

estimates, we also calculated σ2
Thraupidae/σ2

Furnariidae after remov-

ing any taxa that belonged to macroevolutionary diversification

regimes identified by BAMM that differed from background spe-

ciation rates.

Results
ACCELERATED BURSTS OF SPECIATION AND VOCAL

EVOLUTION COINCIDE

We inferred substantial rate heterogeneity in the evolution of

vocal displays and speciation among 581 species of tanagers

and ovenbirds (Fig. 1 and Supplementary Fig. S1 for detail).

We observed similar patterns of speciation rate heterogene-

ity compared to previous studies of the same taxa with re-

spect to the number and location of diversification rate shifts

in the phylogeny (e.g., Derryberry et al. 2011; Burns et al.

2014). Specifically, we found diversification rate shifts corre-

sponding to Darwin’s finches, the subfamily Sporophilinae, and

members of the genus Cranioleuca and closely related species

(Fig. 1). The number of evolutionary rate shifts varied sub-

stantially among vocal characters (Fig. 1; Supplementary Fig.

S2) and pPCA axes (Supplementary Fig. S3; Supplementary

Fig. S4): some characters, such as song length, had approxi-

mately 65 rate shifts, while others, such as vocal performance,

had closer to 25 macroevolutionary regimes. Using the com-

bined dataset of Thraupidae and Furnariidae, we uncovered

monotonic, positive correlations between speciation rate and

four vocal characters: minimum frequency, maximum frequency,

peak frequency, and song length (Fig. 2). We also uncovered

positive correlations between speciation rates and evolution-

ary rates for four out of six pPCA axes (Supplementary Fig.

S5). When each family was considered separately, however, we

found no significant correlations between rates of speciation

and evolutionary rates of any of the eight vocal characters, al-

though correlation coefficients were generally higher in thraupids

with learned song compared to furnariids with innate song

(Fig. 2).

VOCAL DISPLAYS EVOLVE FASTER AMONG TAXA

WITH LEARNED SONG

We found significant differences in multivariate rates of vocal evo-

lution between thraupids and furnariids. Specifically, vocal dis-

plays evolve roughly 1.4× faster in thraupids with learned song

compared to furnariids with innate song (σ2
Thraupidae = 28.64;

σ2
Furnariidae = 20.30; σ2

Thraupidae/σ2
Furnariidae = 1.41; psim = 0.002).

When we jackknifed our dataset, we found that the mean of the

resulting pseudo values was σ2
Thraupidae/σ2

Furnariidae = 1.38 (95%

confidence intervals = 1.26–1.50). Furthermore, after removing

taxa that belonged to evolutionary regimes with speciation rates

that differed from background diversification rates, we found that

thraupids still have faster rates of vocal evolution compared to

furnariids (σ2
Thraupidae trim/σ2

Furnariidae trim = 1.78; psim = 0.002).

Together, these findings suggests that the higher rates of multi-

variate vocal evolution among tanagers inferred with the complete

dataset is a generalized pattern that is not driven by a few taxa of

large effect.

Discussion
Our analyses reveal coincident bursts in rates of speciation and

various song characters at multiple nodes within Furnariidae and

Thraupidae (Fig. 2). When we combined phylogenetic and bioa-

coustic data from both these families, we found correlations be-

tween speciation and frequency related (i.e., minimum frequency,

maximum frequency, peak frequency; Fig. 2) as well as structural

aspects of song (i.e., song length; Fig. 2). These correlations are

driven in large part by coincident rate shifts in two thraupid clades

(Darwin’s finches and Neotropical seedeaters and seed finches)

and one furnariid clade (spinetails and their allies). We also un-

covered faster overall rates of vocal evolution among thraupids,

which have learned song, compared to furnariids, which have in-

nate song. These patterns may be driven by multiple, nonexclusive

biological processes.

POSITIVE ASSOCIATIONS BETWEEN RATES

OF SPECIATION AND TRAIT EVOLUTION

One possible explanation of the positive association between rates

of vocal evolution and speciation is that acoustic divergence may

occur late in the speciation process (Wilkins et al. 2013). In this

scenario, songs diverge relatively slowly in allopatry. On sec-

ondary contact, once speciation is complete, song differences

then rapidly increase, as expected under a model of reinforce-

ment (Servedio 2004; Olofsson et al. 2011). Rather than rapid

vocal evolution promoting speciation, selection against hybrids

between diverged lineages is driving character displacement of

mating signals. Character displacement of songs appears unlikely,

however, at least in furnariids. Work in this radiation suggests

that character displacement may only occur in earlier stages of
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Figure 1. Relative rates of speciation or vocal evolution mapped onto the combined MCC phylogenies of Thraupidae and Furnariidae.

Colors at each point in time along branches indicate the relative instantaneous rate of speciation or phenotypic evolution. Evolutionary

rates are averaged across all evolutionary regimes sampled from the posterior. The evolutionary rate shift configuration with the highest

posterior probability is shown for each character, in which the position of rate accelerations and decelerations are indicated with symbols

that respond to different speciation regimes. Blue-filled circles with blue outlines pertain to the background thraupid speciation regime.

Red-filled circles with blue outlines correspond to Darwins Finches. Yellow-filled circles with blue outlines pertain to Sporophilinae. Red-

filled diamonds with red outlines correspond to the background furnariid speciation regime. Yellow-filled diamonds with red outlines

pertain to Cranioleuca and allies. Rate shifts are numbered according to their relative node depth; smaller numbers indicate rate shifts

that occur on deeper nodes in the phylogeny. Evolutionary bursts of speciation and vocal evolution often coincide in these two lineages.

Illustrations reproduced with the permission of Lynx Edicions.
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assigned to evolutionary regimes that are distinct from the background regime (i.e., the regime with the greatest number of taxa), are

distinguished with different colored symbols, as shown in the key at the bottom right. The Spearman’s correlation coefficients and the

corresponding P values are displayed for each comparison. When the P value is statistically significant (i.e., below 0.05) a Loess-smoothed

trend line is displayed.

adaptive radiations; apparently high levels of character divergence

between sympatric taxa may simply reflect time since divergence

without invoking character displacement (Tobias et al 2014).

Careful examinations of the association between acoustic diver-

gence and neutral genetic distance are needed to assess whether

acoustic divergence is occurring earlier or later in the speciation

process.

An alternative explanation is that the evolution of vocal traits

is promoting the speciation process. Vocal diversification could

promote speciation if divergence in vocal characters is associated

with divergence in mating preferences such that vocal traits are

acting as premating barriers to gene flow (West-Eberhard 1983;

Price 1998). Accrual of differences in secondary sexual characters

linked to mate choice—such as bird song—could shape patterns

of gene flow among populations, subsequently increasing the pace

of speciation (Slater 1986; Grant and Grant 1996). Accelerated

song evolution within a lineage may therefore represent a shift to

a distinct evolutionary regime that promotes the rapid appearance

and fixation of vocal differences and associated mate preferences

among populations and species.

Models of vocal evolution suggest that periods of allopatry

promote drift in mating preferences and signal content (Lachlan

and Servedio 2004), and evolutionary processes that reduce popu-

lation sizes may further accelerate song divergence by increasing

the effects of drift (Lynch and Baker 1994; Grant and Grant 1996).

Island archipelagos or biogeographic histories characterized by

repeated range fragmentations and reductions in population size

offer plausible scenarios that may promote accelerated vocal evo-

lution and speciation (Hewitt 1996; Grant and Grant 1996; Lovette

2005; Losos and Ricklefs 2009). Among the taxa considered here,

we observe accelerated vocal evolution and speciation among Dar-

win’s finches, which have a storied history of colonization and di-

versification in the Galápagos archipelago (Grant 1986; Sato et al.

2001). Meanwhile, seedeaters and seed-finches in the subfamily

Sporophilinae inhabit grasslands in Central and South America,

which have undergone numerous periodic contractions and ex-

pansions in response to glacial cycles (Cracraft and Prum 1988;

Clapperton 1993; Mason and Burns 2013); furthermore, various

lineages in this subfamily—such as the southern capuchinos—

have undergone recent bouts of speciation in short evolutionary

timeframes (Campagna et al. 2012, 2015). Finally, rapid and re-

cent diversification among spinetails in the genus Cranioleuca

and closely related species is characterized by a complex biogeo-

graphic history involving numerous small, allopatric distributions
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in the Andes and Amazonian lowlands (Garcia-Moreno 1999;

Derryberry et al. 2011). Taken together, evolutionary scenarios

that favor repeated partitioning of geographic distributions and

population contractions may accelerate vocal evolution as well

as corresponding mate preferences, thereby rapidly generating

reproductively isolated lineages and augmenting the tempo of

speciation and trait evolution.

Differentiation in vocal signals may also be an indirect effect

of divergence along ecological axes. Avian vocalizations coe-

volve with numerous ecological traits: bill size and shape (Podos

2001; Seddon 2005; Derryberry et al. 2011), body size (Tubaro

and Mahler 1998; Mason and Burns 2015), and differences in

the bioacoustics properties of vegetation structure among habitat

types types (Morton 1975; Boncoraglio and Saino 2007; Tobias

et al. 2010) can all impart selective constraints on the evolution

of bird song (Podos et al. 2004). If lineages undergoing acceler-

ated speciation are also rapidly and repeatedly diversifying into

different habitat types or trophic niches, then vocal divergence

may accumulate as a byproduct of ecological diversification. Bill

size and shape play important roles in avian trophic ecology; bill

morphology is correlated with frequency-related and temporal as-

pects of vocal displays in Darwin’s finches (Podos 2001; Huber

and Podos 2006) and woodcreepers (Derryberry et al. 2012), both

of which are included in this study. Furthermore, rates of cli-

matic niche evolution are correlated with species richness in both

thraupids (Title and Burns 2015), furnariids (G. Seeholzer, pers.

comm.), and birds more generally (Cooney et al. 2016). Thus,

natural and sexual selection may act together to accelerate trait

evolution and the generation of premating barriers to gene flow,

as has been suggested in other taxa (Wagner et al. 2012; Safran

et al. 2013).

When we considered associations between speciation rates

and rates of vocal evolution within each family independently,

we found no significant correlations (Fig. 2). Interpreting this

null result is not possible as we lack the statistical power to

determine whether learning influences macroevolutionary links

between rates of vocal evolution and speciation by comparing

analyses performed on each clade independently. Comparative

studies that aim to document macroevolutionary rate variation

in speciation and phenotypic evolution typically require many

hundreds—if not thousands—of taxa to reach sufficient statisti-

cal power (Rabosky et al. 2013; Rabosky and Huang 2015); such

comparisons are inherently limited by the number of diversifi-

cation rate shifts that characterize the evolutionary history of a

given clade. As datasets from other taxa with learned songs (i.e.,

hummingbirds, parrots) or innate songs (i.e., most nonpasser-

ines) are accumulated, we can better determine if learning in-

fluences associations between rates of vocal evolution and spe-

ciation by increasing the number of evolutionary regimes under

consideration.

RATES OF BEHAVIORAL EVOLUTION

AND DEVELOPMENTAL MODES

We also observed faster rates of vocal evolution among species

with learned song than those with unlearned song among the taxa

considered here. This observation was robust to jackknifing our

dataset by randomly removing a subset of taxa and also by re-

moving taxa that differed from background rates. Together, these

jackknifing results suggest that faster rates of vocal evolution

among thraupids is driven by higher overall rates across thraupids

rather than a few taxa with exceptionally higher rates of vocal

evolution. We note, however, that the multivariate method imple-

mented in this study (Adams 2014) assumes a single evolutionary

rate among the taxa assigned to each comparison group. Given

that we observed multiple rate shifts for each song character in

our study, this assumption is likely not true for our dataset and

perhaps most datasets. Yet, we know of no multivariate method

to estimate and compare evolutionary rates among different tax-

onomic groupings; developing a methodological framework that

allows multivariate comparisons of trait evolution while allow-

ing rates to vary within comparison groups would be a valuable

contribution to the comparative phylogenetic toolbox. Accept-

ing these methodological caveats, we suggest possible biological

mechanisms that may underlie faster vocal evolution in Thraupi-

dae compared to Furnariidae.

Our findings support the hypothesis that learning could pro-

mote evolvability of song. Learning is a form of phenotypic plas-

ticity, which has long been predicted to accelerate trait evolution

(Plotkin 1988; West-Eberhard 2005). Unlike many other plastic

responses, learned behaviors can be transferred across genera-

tions. Cultural transmission of learned behaviors, such as song

in oscines, can rapidly generate new selective environments and

persistence of novel behaviors across generations (reviewed in

Duckworth 2009). The effects of plasticity vary, however, when

lineages come into secondary contact and depend on reaction

norms, the degree of plasticity, and inheritability for a given

trait (Lachlan and Servedio 2004; Pfennig et al. 2010). Yet in

allopatry, models consistently predict that phenotypic plasticity—

specifically learning—should accelerate trait evolution (Baldwin

1986; Irwin and Price 1999; Lachlan and Servedio 2004). Al-

lopatric speciation through vicariance and dispersal has played

a large part in the evolutionary history of Neotropical avifauna

(Cracraft and Prum 1988; Smith et al. 2014). We therefore spec-

ulate that accelerated rates of vocal evolution among taxa with

learned song may reflect a macroevolutionary signature of the

rapid generation and fixation of novel vocal phenotypes among

populations and species of oscines through song learning and

cultural evolution in allopatry.

Our results contribute to the growing literature examining

whether learning as a developmental mode affects the rate of vocal

evolution. Previous studies have found accelerated rates of vocal
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evolution among oscines compared to suboscines at temperate,

but not tropical, latitudes (Weir and Wheatcroft 2011). Another

study on parrots found similar rates of evolution for learned vocal

signals and morphological traits in parrots (Medina-Garcı́a et al.

2015), which is not consistent with the hypothesis that learning

accelerates vocal evolution. Methodological differences between

these studies and ours preclude direct comparisons, but the pat-

terns observed in this study may not be retained across all avian

lineages and may vary among biogeographic regions.

LIMITATIONS OF OUR STUDY

Although our analysis leverages song data from thousands of

individuals representing hundreds of species, our inference ulti-

mately relies on a one-to-one comparison of lineages that vary

in vocal ontogeny. Furnariids and thraupids vary in many aspects

of their biology beyond their vocal development, which may also

contribute to faster rates of vocal evolution among thraupids as

representative oscines with song learning. For example, the sy-

ringeal anatomy of thraupids, and oscines more generally, is far

more complex than furnariids, such that thraupids may be able to

use their syrinx to produce a wider variety of vocal signals. This

difference in syringeal morphology may therefore also affect the

evolvability of song.

One additional caveat to our interpretations is that our find-

ings could in part be explained by taxonomic sampling and inaccu-

racies in species delimitation. Comparative studies are contingent

on an accurate species-level taxonomy (Isaac 2004). Although

we followed a widely used and up-to-date taxonomy to guide our

comparative analyses (i.e., Clements et al. 2015), many of the

taxa included in our study have been the subject of taxonomic

debates over species delimitation (Tobias et al. 2008; Mckay and

Zink 2014). Further, song has become an important marker in

identifying species, particularly cryptic species in tropical clades

such as ours (Tobias et al. 2012). If taxonomists are more likely

to identify species in lineages with more phenotypic variation as-

sociated with species identification, this could lead to a positive

association between rates of phenotypic evolution and speciation

(Rabosky et al. 2013). Some caution may therefore be required in

interpreting rapid bursts of trait evolution and speciation in recent

radiations. However, these caveats underline the advantage of fo-

cusing on two largely codistributed clades in the same order of

birds, which reduces the influence of geographic and taxonomic

biases in species delimitation.

CONCLUSION

In summary, we find evidence for coincident bursts in rates of

vocal evolution and speciation when combining bioacoustics and

phylogenetic data from two distantly related lineages of Neotrop-

ical passerine birds. We also uncover faster overall rates of vo-

cal evolution among thraupids with learned song compared to

furnariids with innate song. We propose that the accrual of pre-

mating barriers to gene flow observed in certain lineages may

be propelled by accelerated vocal diversification through sexual

selection driving cultural evolution as well as indirect effects of

ecological diversification on bioacoustic displays. Alternatively,

song diversification may follow speciation through the process

of reinforcement. While recent studies have highlighted links be-

tween rates of morphological evolution and speciation (Rabosky

and Adams 2012; Rabosky et al. 2013), our findings suggest that

behavioral traits involved in mate choice and territoriality among

individuals and populations also contribute to macroevolution-

ary patterns of species richness. Finally, our study suggests that

ontogenetic differences in behavioral development—namely, the

presence of learning as a form of phenotypic plasticity in bird

song—may influence the tempo of phenotypic diversification at

macroevolutionary scales.
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