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Dispersal ability is a key factor in determining insular distributions and island

community composition, yet non-vagile terrestrial organisms widely occur on

oceanic islands. The landfowl (pheasants, partridges, grouse, turkeys, quails

and relatives) are generally poor dispersers, but the Old World quail (Coturnix)

are a notable exception. These birds evolved small body sizes and high-aspect-

ratio wing shapes, and hence are capable of trans-continental migrations and

trans-oceanic colonization. Two monotypic partridge genera, Margaroperdix of

Madagascar and Anurophasis of alpine New Guinea, may represent additional

examples of trans-marine dispersal in landfowl, but their body size and wing

shape are typical of poorly dispersive continental species. Here, we estimate

historical relationships of quail and their relatives using phylogenomics, and

infer body size and wing shape evolution in relation to trans-marine dispersal

events. Our results show that Margaroperdix and Anurophasis are nested within

the Coturnix quail, and are each ‘island giants’ that independently evolved

from dispersive, Coturnix-like ancestral populations that colonized and were

subsequently isolated on Madagascar and New Guinea. This evolutionary

cycle of gain and loss of dispersal ability, coupled with extinction of disper-

sive taxa, can result in the false appearance that non-vagile taxa somehow

underwent rare oceanic dispersal.
1. Introduction
Organisms that are unable to disperse across physical or environmental barriers

should be unable to achieve widespread or global distributions. Yet, paradoxically,

organisms that lack dispersal capability are still characteristic components of

isolated continents and island communities [1–4]. For example, large-bodied

and flightless ratite birds (e.g. ostrich, emu) have seemingly colonized distant

areas over evolutionary time despite severe dispersal constraints [5–8].

Two hypotheses explain how dispersal-limited organisms reach novel areas:

via chance dispersal and vagile ancestors. The chance dispersal hypothesis

relies on rare, stochastic events to explain colonization by poor dispersers over

evolutionary time [9–11]. Examples include New World monkeys, rodents and

salt-intolerant amphibians that rafted between continents or islands on floating

debris [12–15]. Alternatively, the vagile ancestor hypothesis posits that non-

dispersive lineages are descended from mobile ancestors that reached new islands

and continents by colonizing across geographical barriers. Subsequently, parallel

or convergent selection towards reduced dispersal abilities and/or increased

body size resulted in poorly dispersing descendants. Extinction of the original

vagile ancestor lineages over time may then result in the appearance of dis-

persal-limited groups with relict distributions. This cycle of range expansion,

morphological evolution and extinction has recently been favoured to explain
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Figure 1. Maps of (a) the combined natural distribution of all phasianoid landfowl excluding Coturnix species; phasianoids are limited to continents and islands with
recent land connections to Laurasia with the exception of Margaroperdix and Anurophasis. (b) The combined natural distribution of Coturnix, which is found widely
throughout the Eastern Hemisphere. (c) Bivariate plot of mean body mass and mean hand-wing index (HWI) for phasianoid species; Coturnix species occupy a
unique area of morphospace, having small body size and short wings. (d ) Examples of phasianoid wingshape and their hand-wing indices; Alectoris chukar
has short, broad wings typical of the ‘partridge’ morphotype, whereas Coturnix coturnix has long, narrow wings typical of Old World quail. (Online version in colour.)
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the distributions of non-vagile birds as diverse as the flight-

less ratites and tinamous [5,7,8], and the mostly flightless

New Zealand wrens [16]. However, in these cases, the putative

vagile ancestors were purely hypothetical. The only fossil

evidence of vagile ratites is from the Palaearctic, where no

extant ratites reside [8,17–19]. Similarly, all known fossil

New Zealand wrens already feature non-vagile traits [16].

The pheasants, partridges, grouse, turkeys, quail and

relatives (Aves: Phasianoidea, Phasianidae, Odontophoridae

and Numididae) feature a near-worldwide distribution, being

absent only from southern South America, Antarctica, extre-

mely dry deserts and some insular regions (figure 1a,b). Yet,

despite having a broad distribution, phasianoids are among

the poorest-dispersing flighted birds. Species are generally

heavy-bodied, short-winged and ground dwelling [20]. Most

fly only in short bursts to escape predators, or into trees to

roost. Phasianoids are generally thought to be incapable of

crossing marine barriers [21], and thus are generally limited to

continents and continental islands (i.e. islands that had recent

dry-land connections to continents during periods of low sea

levels or sea-ice connections). Rare overwater movements

have been observed in arctic ptarmigan (Lagopus spp.) [22]

(but see [23,24]), otherwise historical movements of phasianoid

lineages between North America and Asia were likely to have

been facilitated by the Bering Land Bridge [25].

The Old World quail (Coturnix) are a great contrast to most

phasianoids in terms of dispersal ability. Coturnix are excellent

flyers, and their impressive long-distance transcontinental

movements were recorded in texts as dating back to the Old

Testament (Numbers 11: 31–32) and Pliny’s Natural History
(AD 79). Unlike other phasianoids, Coturnix exhibit small
body size and high-aspect-ratio wings (figure 1c,d), both adap-

tations that improve long-distance flight performance [26].

In addition, Coturnix species are widespread on oceanic islands

in the Atlantic, Indian and Pacific Oceans, and they have

repeatedly crossed major faunal boundaries such as Wallace’s

and Lydekker’s Lines (figure 1b).

Curiously, even within the putative ‘non-vagile’ phasianoids

(all but Coturnix and perhaps Lagopus), two species are found

on landmasses across marine barriers from continental

sources: Madagascan partridge (Margaroperdix madagarensis)
of Madagascar and Snow Mountain quail (Anurophasis
monorthonyx) of New Guinea. Anurophasis and Margaroperdix
have medium-sized bodies and short, rounded wings similar

to various other partridges and francolins (figure 1c). However,

previous authors have noted some similarities between Margar-
operdix, Anurophasis and Coturnix, including plumage characters

of their downy chicks [20]. Molecular data now support close

relationships between Margaroperdix and Coturnix [27–29]. Yet,

because several Coturnix species and Anurophasis lack DNA

sequence data, relationships in the group remain uncertain.

Continental vicariance of Madagascar and Australasia far

preceded diversification of phasianoids [30] and modern birds

in general [31–33], meaning Margaroperdix and Anurophasis
ancestors must have crossed permanent marine barriers.

How did these ‘non-vagile’ phasianoids come to inhabit their

present insular distributions? Are they examples of rare, chance

dispersal across oceanic barriers by generally non-vagile birds?

Alternatively, are they descended from small-bodied, disper-

sive Coturnix stock, which evolved into ‘island giants’ once

isolated in unique insular environments? Previous studies

have identified great plasticity in phasianoid morphotypes,

http://rspb.royalsocietypublishing.org/
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with ‘pheasant’ (large-bodied, long-tailed), ‘partridge’

(medium-bodied, short-tailed) and ‘quail’ (small-bodied,

short-tailed) morphologies evolving repeatedly across the

tree [28,34].

To understand if body size and wing shape evolution

influenced marine dispersal propensity in phasianoids,

we sequenced genome-wide markers from Margaroperdix,

Anurophasis, all extant Coturnix species and a wide variety

of phasianoids to place them in a phylogenetic framework.

We then used mensural data to characterize ancestral mor-

phological states of phasianoids to test topological and

morphological predictions of the ‘chance dispersal’ and

‘vagile ancestor’ hypotheses.
R.Soc.B
284:20170210
2. Material and methods
(a) DNA sequencing and data processing
We extracted DNA from fresh tissues and toepad clips from

museum specimens, including Anurophasis, Margaroperdix and all

extant Coturnix species (electronic supplementary material, table

S1). Target capture libraries of 5060 ultraconserved elements loci

using 5472 probes [35] were performed by RAPiD Genomics (Gai-

nesville, FL). In total, 150 nt paired-end sequence reads were

generated on an Illumina HISEQ 3000. We removed PCR duplica-

tes from demultiplexed reads with PRINSEQ-LITE 0.20.4 [36],

trimmed and error corrected raw reads with QUORUM [37], and

read-mapped to known UCEs sequences from published Gallus,
Meleagris and Coturnix genomes with BOWTIE2 2.2.5 [38]. We then

assembled quality-controlled reads with TRINITY r20131110 [39].

We aligned the novel UCEs to those from other galliforms (Craci-

dae, Megapodiidae) and an anseriform outgroup, and data

generated from previous studies [25,29,30], resulting in 115 total

sampled taxa. We extracted UCEs from contigs with PHYLUCE

1.5 [40] and aligned each UCE locus with MAFFT 7 [41]. We

trimmed ends of alignments when 35% of cells were missing

across a 20 bp sliding window.

(b) Phylogenetic inference
We concatenated all loci recovered in more than 50% of taxa

and obtained the maximum-likelihood (ML) estimate of phylogeny

using RAXML 8.2.8 [42] and the GTRGAMMA model with parti-

tioning. We selected the optimal partitioning scheme using the

Bayesian information criterion and the rclusterf algorithm [43] in

PARTITIONFINDER 2.0-pre11 [44], and quantified support with 100

thorough bootstrap replicates. We implemented MCMCtree

(PAML 4.8 [45]) using a relaxed clock and six galliform fossil

calibrations [30,46] to calibrate minimum node ages (electronic

supplementary material, table S2) and infer an ultrametric, time-

calibrated phylogeny. We restricted analysis to the largest single

DNA sequence partition identified by PARTITIONFINDER to reduce

among-site rate heterogeneity and computation time. We also esti-

mated a phylogeny statistically consistent under the multispecies

coalescent model with 100 SVDquartets bootstraps [47], each

sampling 10 000 000 quartets, in PAUP* 4a150 [48].

(c) Comparative analyses
To determine if trans-oceanic colonization is predicted by dispersal

and body mass evolution, we compiled information on body mass

and wing morphometrics to produce an index of flight ability: the

hand-wing index (HWI). HWI is related to wing aspect/ratio, an

important metric in flight performance [26,49]. Wings with high

aspect ratio/high HWI are longer, narrower and produce greater

lift than wings with low aspect ratio/low HWI. HWI correlates

strongly with dispersal capabilities [49–51]. We calculated mean
HWI for phasianoids and outgroups based on measurements

from traditional museum skins with the wings prepared folded

on the body. Although direct measurement of wing aspect ratio

and additional flight performance metrics from spread wing speci-

mens, skeletons and anatomical specimens would be preferable

[1], spread-wing specimens and skeletal specimens of Anurophasis
and many other phasianoid species do not exist. To calculate HWI,

we measured wing chord to the longest primary and wing chord to

the longest secondary from a minimum of four specimens per

species (two male, two female) of all available phasianoids and

outgroups. We used mean body mass estimates from the literature

[20] because many older museum specimens lacked body mass

data. We used the R package geiger 2.0.6 [52] to test phylogenetic

signal (Blomberg’s K) and various evolutionary models for HWI,

body mass (log-transformed) and HWI scaled to log-transformed

body mass (electronic supplementary material, table S3). We also

tested for potential correlation between body mass and HWI. We

computed continuous ancestral states for HWI, body mass and

HWI to body mass ratio under the best-fit evolutionary model

with R package phytools [53].
3. Results
(a) Phylogenetic inference
We identified 4021 suitable UCE loci (1.67 million bp) that

met our criteria for phylogenetic analysis. ML phylogeny was

well resolved (figure 2; electronic supplementary material,

figure S4); only five nodes received less than 100% bootstrap

support. The SVDquartets topology was similarly well resolved

and corroborated the ML topology, although SVDquartets

bootstrap support was slightly lower than the ML support

(electronic supplementary material, figure S4). We inferred a

crown age of Galliformes at 55–78 Ma (95% HPD) and

a crown age of Old World quail at 16–27 Ma (95% HPD).

Both Margaroperdix and Anurophasis were nested within the

Coturnix clade (figure 2, inset; electronic supplementary

material, figure S4). Margaroperdix was sister to a clade

of five Coturnix species: C. coturnix, C. japonica, C. pectoralis,
C. coromandelica and C. delegorguei. Anurophasis was sister to

C. ypsilophora; Anurophasis þ C. ypsilophora was sister to the

small ‘blue’ quails C. chinensis and C. adansonii. All relation-

ships within the enlarged Coturnix clade were supported

with 100% ML and SVDquartets bootstraps. The Coturnix
clade was sister to the small partridge Ammoperdix, rather

than other small-bodied, quail-like galliforms such as bush-

quail (Perdicula) or New World quail (Odontophoridae, the

sister group to Phasianidae).

(b) Comparative analyses
A simple bivariate plot (figure 1c) demonstrates that Coturnix
occupy a unique area of morphological space within the

Phasianoidea, having both small body size and large HWI.

Conversely, Margaroperdix and Anurophasis, have moderate

body sizes and HWI similar to many continental phasianoid

species, such as partridges (e.g. Perdix, Arborophila) and franco-

lins (e.g. Francolinus, Pternistis). Model testing indicated that

Brownian motion was the best-fit evolutionary model for

HWI, body mass and HWI scaled to body mass, given the phy-

logeny (electronic supplementary material, table S3); and was

therefore chosen in subsequent analyses. Blomberg’s K indi-

cated significant phylogenetic signal for HWI ( p , 0.00001,

K ¼ 0.73) and body mass ( p , 0.00001, K ¼ 0.86). The HWI/

body mass ratio ( p , 0.00001, K ¼ 0.92) had greater

http://rspb.royalsocietypublishing.org/
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phylogenetic signal than either variable alone. Body mass and

HWI were not significantly correlated across the phylogeny

(Spearman p ¼ 0.3, r ¼ 0.096).

We found that wing shape (i.e. HWI) has evolved substan-

tially in phasianoids (figure 3a). From an average ancestor,

relatively short wings have evolved in the great argus

(Argusianus argus), peacock-pheasants (Polyplectron), bush-

quails (Perdicula), tragopans (Tragopan) and some pheasants

(Crossoptilon). Long wings have also evolved multiple times,

in snowcocks (Tetraogallus), Coturnix quails, grouse and ptar-

migan (Tetraoninae). Similarly, evolution of body size in

phasianoides has been dynamic (figure 3b). From a relatively

large-bodied ancestor, body size increased in the curassows,

guans and chachalacas, argus and peafowl (Argusianus and

Pavo), snowcocks (Tetraogallus), turkeys (Meleagris) and caper-

caillies (Tetrao). Smaller body sizes evolved independently in

the New World quail (Odontophoridae), forest partridges

(Arborophilinae), bush-quail (Perdicula) and the Coturnix
quail. However, Coturnix is unique in having long, high-HWI

wings and small body sizes in concert (figure 3c). These

traits reversed in insular Margaroperdix and Anurophasis,
having similar values to various partridges and francolins.
4. Discussion
Phylogeny and ancestral reconstructions reject the hypothesis

that non-Coturnix phasianoids are capable of rare, trans-marine

colonization events. Rather, the ‘partridges’ Margaroperdix of

Madagascar and Anurophasis of New Guinea are actually

‘giant quail’. These species evolved body sizes an order of mag-

nitude larger than their highly vagile Coturnix-like ancestors,

and have converged upon a morphotype defined by moderate

body size, short broad wings and a short tail. This ‘partridge’

morphotype has evolved multiple times across Phasianoidea,

http://rspb.royalsocietypublishing.org/
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and is characteristic of genera including Perdix, Francolinus,
Pternistis, Arborophila and others [28,34].

Evolution of body size has been suggested as an adap-

tation in populations following insular colonization [54–56],

although whether or not it is a predictable, general pattern

remains controversial [57,58]. In theory, island gigantism (i.e.

organism body size increase on islands) is due to multiple fac-

tors including ecological release from mainland predation and

character displacement from insular competitors [59,60].

Whether or not predation is a credible factor in phasianoid

body size evolution is difficult to ascertain because of little

direct evidence. Madagascar and New Guinea are both large

islands that support numerous mammalian and raptorial

predators. The Madagascar harrier (Circus macrosceles), Mada-

gascar sparrowhawk (Accipiter madagascariensis) and the fossa

(Cryptoprocta ferox) are known to prey on Margaroperdix [20].

Predation pressure upon Anurophasis, like most aspects of its

ecology and natural history, is virtually unknown [20].

Some evidence exists for character displacement in

insular Old World quails. Both Margaroperdix and Anurophasis
are found on the same islands as other Coturnix species.

Margaroperdix is sympatric with resident Coturnix coturnix popu-

lations on Madagascar, and Anurophasis is found at elevations

above populations of its sister taxa C. ypsilophora, as well as C.
chinensis, on New Guinea. Extinct Coturnix gomera [61] from

the Canary Islands provides a third likely example of convergent

gigantism among quails on islands. Coturnix gomera was larger

and more robust than sympatric C. coturnix, although it was per-

haps at an earlier stage of divergence and morphological

distinctiveness than Margaroperdix or Anurophasis.
The increased body size in Margaroperdix and Anurophasis

could be related to co-distribution with Coturnix relatives

and character displacement as predicted by the taxon cycle
hypothesis, where lineages alternate between phases of range

expansion and contraction over time [62–64]. Migratory and

dispersive quail species qualify as lineages in a state of distribu-

tional expansion, whereas large-bodied insular forms with

reduced HWI are in a state of contraction. Under the taxon

cycle hypothesis, larger body sizes of Margaroperdix and

Anurophasis would be interpreted as character displacement

to avoid competition, and loss of dispersal capability as an

adaptation to reduce metabolic cost of large flight muscles—

simultaneously reducing dispersal capability [63,65,66].

Maintenance of flight muscle mass needed for long dispersal

flights is energetically demanding [66], and insular bird popu-

lations tend to evolve towards reduced dispersal if there is not

strong connectivity with nearby populations [1,50,67]. In

extreme cases, this selection pressure can lead to complete

flightlessness [68]. The character displacement/taxon cycle

hypothesis is also congruent with the lack of size evolu-

tion in the recently extinct New Zealand quail (Coturnix
novaezelandiae). It was only naturally occurring Coturnix on

New Zealand, and it was approximately the same size as its

sister taxon, C. pectoralis of Australia.

The history of insular colonization and morphological

evolution in Coturnix quail provides an empirical example of

a general framework, explaining how ‘non-vagile’ organisms

disperse across marine barriers (figure 4). If ecological special-

ization on islands reduces dispersal ability, then vagility

evolves in relation to the taxon cycle. Phases of this dispersal

cycle are: (i) a truly non-vagile ancestor; (ii) evolution of

vagility, including gains of morphological, physiological or

behavioural traits that increase dispersal potential; (iii) the

newly dispersive species colonizes novel areas unavailable

to its non-vagile relatives; (iv) colonizing lineages become

isolated from the dispersive ancestor, and selection for reduced

http://rspb.royalsocietypublishing.org/
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dispersal on islands reverses morphology, physiology and

behaviour to non-vagile states. In some instances, the differen-

tial extinction of widespread dispersive species in primarily

non-vagile clades, along with survival of mainland and insular

species with reduced dispersal ability, result in the confus-

ing impression that they must have colonized their island

ranges by marine dispersal despite being poorly adapted to

do so. This results in a fifth stage: relictual distributions of

non-vagile taxa distributed across marine barriers.

In the example of quail, the key innovations resulting in

increased dispersal were evolution of small body size, long

wings and perhaps migratory behaviour. Various Coturnix
lineages are at stages two (C. coromandelica, C. delegorguei,
C. adansonii) or three (C. coturnix, C. japonica, C. ypsilophora,
C. pectoralis, C. novaezelandiae), whereas Margaroperdix,
Anurophasis and perhaps C. gomerae reached the fourth stage.

Hypothetical extinction of all dispersive Coturnix species,

along with persistence of the Margaroperdix/Anurophasis
lineages, would result in the fifth stage, which could easily be

misinterpreted as marine dispersal by these non-vagile species.

Examples of ‘stage five’ in this framework include relictual

lineages such as ratites [5,7], New Zealand wrens [16] and the

New Caledonian kagu [69]. However, without a fossil record,

dispersive ancestors in these and other stage-five examples

can only be inferred.
5. Conclusion
Our phylogenetic and morphometric analyses confirm that

Margaroperdix and Anurophasis are nested within the Coturnix
clade, and offer clear examples of island gigantism and

evolutionary reversion to non-vagile adaptations in resident

insular lineages arising within a vagile clade, rather than

cases of rare dispersal by non-vagile taxa. Previous studies

have reported increased body size [55], as well as rapid losses

of dispersal ability [1], in lineages colonizing oceanic islands.

Our results extend these findings to galliforms, and suggest

that evidence for rare marine dispersal events by non-vagile

taxa should be treated with caution, even when apparent

cases derive from largely non-vagile clades.
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