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Abstract. Species’ traits have been widely championed as the key to predicting which
species are most threatened by habitat loss, yet previous work has failed to detect trends that
are consistent enough to guide large-scale conservation and management. Here we explore
whether traits and environmental variables predict species sensitivity to habitat loss across two
data sets generated by independent avifaunal studies in the Atlantic Forest of Brazil, both of
which detected a similar assemblage of species, and similar species-specific responses to habitat
change, across an overlapping sample of sites. Specifically, we tested whether 25 distributional,
climatic, ecological, behavioral, and morphological variables predict sensitivity to habitat loss
among 196 bird species, both within and across studies, and when data were analysed as occur-
rence or abundance. We found that four to nine variables showed high explanatory power
within a single study or data set, but none performed as strong predictors across all data sets.
Our results demonstrate that the use of species traits to predict sensitivity to anthropogenic
habitat loss can produce predictions that are species- and site-specific and not scalable to whole
regions or biomes, and thus should be used with caution.
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INTRODUCTION

Species differ in their response to habitat loss (Banks-
Leite et al. 2012) and understanding the basis of this dif-
ference is vital to comprehending why species are being
lost and how to concentrate conservation effort. Many
studies have examined which traits make a species more
sensitive to human disturbance (see Henle et al. [2004] for
review), with the aim of predicting which species will
require future conservation intervention. While some stud-
ies focused on just a few traits (Stouffer and Bierregaard
1995a, Castelletta et al. 2000, Ribon et al. 2003, Sodhi
et al. 2004), others have considered a larger numbers of
traits (Pakeman 2011, Edwards et al. 2013), trait interac-
tions (Renjifo 1999), and multiple taxa (Faria et al. 2006,
Senior et al. 2013). Regardless of breadth of analyses,
taxa, and study region, previous studies have not found
consistent results (Newmark 1991, Senior et al. 2013).
Most importantly, a large number of studies based their
conclusions on observations from a single community or
region (Renjifo 1999, Kennedy et al. 2010), and generally

lacked an assessment of model transferability to estimate
the reliability of traits as proxies for species sensitivity.
The most commonly explored traits include those related

to population demography, dispersal, sociality, body size,
trophic level and specialization, habitat usage, species inter-
actions, and biogeography (Henle et al. 2004). These traits
are believed to be reasonable proxies for species sensitivity
because they are related to species adaptability or the likeli-
hood of local extinction. Indeed, some authors have found
trends to be consistent across studies and regions (Gray
et al. 2007, Williams et al. 2010), such as an increased
sensitivity to fragmentation in specialized taxa, including
butterflies with narrow feeding niches (Ockinger et al.
2010). Others, however, have found that although traits can
be useful indicators, the patterns may be specific to certain
areas (Sigel et al. 2010, Thornton et al. 2011, Vetter et al.
2011). For example, birds that join mixed-species flocks are
considered highly sensitive to habitat changes, but Sigel
et al. (2010) only found this to be the case in one of the
areas studied. Hence, while this approach may provide
insight into the dynamics of local systems, contradictions
arise due to species- and site-specificity in the relationship
between traits and anthropogenic disturbances, or due to
the different methods used by different authors.
Here, we perform a direct comparison of transferabil-

ity of trait-based models across two data sets generated
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by intensive bird surveys in the Atlantic Forest of Brazil.
The Atlantic Forest has been extensively studied, so pro-
vides a rich testing ground for model transferability. The
data sets used follow similar experimental designs and
were collected in the same study region at an overlap-
ping sample of sites, but used different methods for data
collection. Thus, we (1) investigate which traits can be
used to predict bird species sensitivity to habitat loss and
then (2) assess model transferability by testing whether
traits that are strong predictors of species sensitivity in
one data set maintain their predictive power in different
data sets. We performed the above tests on four different
subsets of the data: occurrence or abundance data of all
recorded species or just the species that were observed in
both studies. Lack of model transferability between data
sets could result from traits being spuriously correlated
to species sensitivity, or from differences in species sensi-
tivities between data sets. The latter is particularly prob-
lematic to these analyses given that different survey
methods were used, which influences the probability of
species detection and therefore the probability of detec-
tion of ecological trends (Banks-Leite et al. 2014). For
this reason, we also examined the consistency of species
sensitivity to habitat change across studies.

METHODS

Study area

Our data originates from two independent studies
conducted in the Atlantic Plateau of the state of S~ao
Paulo, Brazil. The survey area is broadly the same for
both studies, including 19 overlapping study sites
(Appendix S1: Fig. S1). Elevation ranges from 700 to
1,000 m and the original vegetation is lower montane
rainforest. Both studies were designed with similar spa-
tial sampling protocols, comparing paired 10,000-ha
blocks of continuous and fragmented forest landscape,
but differed in the main method of data collection.

Mist-net study (Banks-Leite et al. 2011).—Data were
collected from 2001 to 2007 in 65 study sites varying
from 5% to 100% of forest cover (800 m radius). Nearly
8,000 individuals of 140 species were sampled during
41,000 h of mist netting (Appendix S1).

Point count study (Develey 2004).—Data were collected
from 2000 to 2003 in 32 sites varying from 20% to 100%
of forest cover (800 m radius). Birds were sampled using
10-minute point counts, with 20 point counts carried out
per site, resulting in estimates of abundance for 154 spe-
cies. (Appendix S1).

Trait data

Bird surveys produced a total list of 197 species, includ-
ing 43 species unique to mist netting, 57 unique to point
counts, and 97 shared across data sets. One species,

Picumnus cirratus, was removed from the analysis because
of missing data. Our final data set contained information
on 25 ecological or phenotypic variables for 196 bird spe-
cies (Appendix S2: Table S1). These variables included
information on geographical distribution, as well as a
range of traits chosen to reflect the morphology and ecol-
ogy of species, including their foraging habits and behav-
ior. A similar mix of environmental variables and species
traits are widely used to predict sensitivity to habitat
change (Turner 1996, Henle et al. 2004). For convenience,
we use the term “traits” when environmental variables
and species traits are referred to collectively.
Global species’ distribution area was measured using

ESRI ArcGIS v.10.0 (ESRI, Redlands, California, USA)
from standard range polygons (BirdLife International
and NatureServe 2012). We then used MaxEnt v.3.3.3k
(Phillips et al. 2006) to predict the bio-climatic suitabil-
ity of each survey site for all species. Species distribution
models were produced using the MaxEnt auto features
option and the full set of 19 temperature and rainfall
derived Bioclim variables (Hijmans et al. 2005). Cost
distance analysis was used to find distance to nearest ter-
restrial distributional range edge (i.e., proximity to the
edge of distribution; PED) from the center point of both
study areas. This was conducted using R v.3.3.2 (R Core
Team 2016) and the packages raster (Hijmans and van
Etten 2013), gdistance (van Etten 2012), and maptools
(Bivand and Lewin-Koh 2013), as well as ESRI ArcGIS
v.10.0., defining coastlines using the admin98
boundaries layer. Proximity to range edge (PED) and
distributional range size was logarithmically trans-
formed (ln[x + 1] for PED).
Morphological traits were compiled by measuring

museum specimens following standard protocols (Breg-
man et al. 2015, 2016, Ulrich et al. 2017). We used three
bill measurements (length, width, and depth), tarsus
length, tail length, and wing length (for a more detailed
description of measurements, see Appendix S2: Table S1).
We also calculated the hand wing index (HWI) as an
index of dispersal ability using a combination of wing
length and first secondary length, following Claramunt
et al. (2012). Measurements were accurate to 0.01 mm,
except tail and wing, which were to the nearest millimeter.
Where possible, each measurement was averaged from
four specimens with an even sex ratio. Where trait infor-
mation was unavailable, values were taken from closely
related and ecologically similar congeneric species, or, in
the case of some hummingbird species in monotypic gen-
era, tarsus measurements were taken from similar sized
species in closely related genera. Body mass was compiled
from literature (see Appendix S2: Table S1). All morpho-
logical traits including body mass were logarithmically
transformed for analyses, except HWI.
Diet composition information (Appendix S2: Table S1)

was subject to a PCA on the whole species pool to obtain
independent variables summarizing the diet composition
of each species relative to the rest of the community using
the package vegan (Oksanen et al. 2013).
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Statistical analysis

All statistical analyses were run using R v.3.3.2 (R
Core Team 2016) with packages vegan (Oksanen et al.
2013), caper (Orme et al. 2013), ape (Paradis et al.
2004), and phytools (Revell 2012).
We used a novel approach to select the traits and cal-

culate a species-specific score of sensitivity to habitat
changes for each of species’ abundance and occurrence
(Fig. 1). The approach was based on weighted averages
ordination (Gauch 1982), in which Bray-Curtis and
Sørensen dissimilarity between sites was first calculated
from each of the community abundance and incidence
matrices, respectively. A principal coordinates analysis
(PCoA) was then conducted on each dissimilarity
matrix. We assumed that the position of each site along
the first PCoA axis reflects its position on a gradient of
habitat change based on the previous finding that over
90% of variance in the PCoA axis 1 of the mist-nest data
is explained by landscape metrics (Banks-Leite et al.

2011). The sensitivity of each species, or the weighted
average, was then taken as the average PCoA score of
the sites in which it was found, hence representing its
mean position along the habitat change gradient. Where
abundance data was considered, the value for a species
at each site was calculated by weighting the site score by
the species abundance at that site. The directionality of
the ordination axes were checked (and inverted if
required) to ensure that an increasing sensitivity score
indicated increasing sensitivity to habitat change. This
method produces results that are qualitatively similar to
fourth-corner methods and RLQ (Dray et al. 2014;
Appendix S3), but has the advantage of allowing us to
control for phylogenetic non-independence and allows
for more flexibility in model building.
First, we investigated which species traits can be used to

predict species’ sensitivity to fragmentation using phyloge-
netic generalized least squares (PGLS) models with traits
as explanatory variables. Phylogenetic trees were obtained
as phylogeny subsets from BirdTree.org (Jetz et al. 2012):

FIG. 1. Schematic of the modelling and transferability testing process. The phylogenetic generalized least squares (PGLS) analy-
sis uses the species weights (which are derived from a species by site table using weighted averages), a species phylogeny (consensus
tree), and a trait by species table as input data. After PGLS, traits are selected using stepwise backward model selection, and finally
models are transferred only across similar data sets. [Color figure can be viewed at wileyonlinelibrary.com]
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this data set provides a posterior distribution of phyloge-
nies from Bayesian analyses. For each set of species, we
therefore selected 1,000 trees and calculated a consensus
tree using a 10% burn-in, maximum clade credibility, med-
ian node heights, and a posterior probability limit of 0.5,
using TreeAnnotator v.1.8.3 and FigTree v. 1.4.2. from the
software BEAST (Drummond et al. 2012). Consensus
trees calculated from a large number of trees have been
found to provide the same results as model averaging over
multiple trees (Rubolini et al. 2008). In this case, a consen-
sus tree was used as it allowed greater clarity in model sim-
plification and the influence of phylogeny used was found
to be relatively low for the majority of analyses.
The traits to be included in the PGLS models were

checked for collinearity. All traits that were not highly
correlated (r < 0.7 [Dormann et al. 2013]) were fitted to
form the maximal model. The lambda value of the maxi-
mal model was determined using maximum likelihood
and subsequently fixed to allow for model simplification.
Step-wise simplification was conducted based upon
P values, by using the anova function to compare
between models. The minimum adequate model was
considered to be that in which all terms were significant
at the 0.05 level. This method was preferred over AIC
model selection because of difficulties comparing models
with different random factors (i.e., phylogenetic covari-
ance structure). We did not fit interaction terms as the
data set was not large enough.

Model transferability

We first obtained the R2 from the minimum adequate
PGLS model generated by one data set, and then applied
the same set of selected predictors to obtain the R2 from
the other data set. The difference in R2 between these
models was used to assess the retention of explanatory
power for transferred predictions. This process was con-
ducted in both directions (Fig. 1). We initially fitted the
models using all of the species detected in each data set
to better understand the extent to which we can general-
ize knowledge on response traits from a given bird com-
munity. To ensure that any differences to R2 were not
simply a product of changes in phylogenetic covariance,
we also re-ran models restricted to the 96 species com-
mon to both data sets. We tested for the correlation
between sensitivity scores for this 96-species sample
using the occurrence data and a Pearson correlation to
examine whether survey method influences our measures
of species sensitivity or confounds model transferability.

RESULTS

Species sensitivity

For the shared sampled (n = 96), species’ sensitivity
scores were found to be highly correlated between data
sets (r = 0.86) indicating that observed species responses
to habitat changes are not dependent on the sampling

method, and thus that sampling method is unlikely to
influence model transferability.

All species

For occurrence data, the minimum adequate model
for the mist-net data contained eight variables (adjusted
R2 = 0.34) and the model for the point count data con-
tained six variables (adjusted R2 = 0.43). Some variables
(number of habitats used, open habitat usage, bill width,
tarsus length) were common to both models. When
transferred to the other data set, the explanatory power
of the model parameterized on the mist-net data
increased to 0.38 (despite the inclusion of non-signifi-
cant variables) but the explanatory power of the model
parameterized on the point count data fell to 0.26.
Hence we detected a 12% increase in explanatory power
for one model, and a 38% decrease for the other model.
Using abundance data, seven traits were retained in the

minimum adequate models of species sensitivity using the
mist-net data (adjusted R2 = 0.27), and five traits were
retained using the point count data (adjusted R2 = 0.38).
When transferred, both models lost performance, with
explanatory power falling to R2 values of 0.18 and 0.18,
respectively (representing a drop of 35% and 53% in
explanatory power). Again, the set of variables differed
between models, and only ant following behavior and
understory usage were significant in both models.
No variables were retained across all models (Appen-

dix S2: Table S2).

Species present in both data sets

For occurrence data, the minimum adequate model
for the mist-net data contained six variables (adjusted
R2 = 0.46) while the model for the point count data con-
tained nine variables (adjusted R2 = 0.51). The variables
that were consistent in significance and sign to both
models were ant following behavior, diet composition,
understory usage, open habitat usage, and number of
habitats used. When transferred to the other data set,
the explanatory power of the model parameterized on
the mist-net data dropped to 0.39 and the explanatory
power of the model parameterized on the point count
data fell slightly to 0.47. Thus, a 14% decrease in
explanatory power was found for the mist-net model
and a 7% decrease for the point count model.
For abundance data, the minimum adequate model for

mist-net data contained four variables (adjusted R2 =
0.30), while the minimum adequate model for the point
count data contained five variables (adjusted R2 = 0.44).
Again there was a considerable difference between the
sets of variables (Appendix S2: Table S2); only ant follow-
ing behavior was significant in both data sets. When we
tested for model transferability, we found the explanatory
power of these two models fell to 0.22 and 0.25, respec-
tively (representing a 28% and 43% drop in explanatory
power). Across models of abundance and occurrence data
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on both data sets, only ant following behavior was found
to be consistently significant and positively associated
with the disturbed to intact habitat gradient.

Phylogenetic non-independence

In general, models showed little evidence of phyloge-
netic signal in the data (k, typically 1 9 10�6 or lower,
and not significantly different from zero). Values of k
were also consistent through model simplification, sug-
gesting that variable combinations do not differ mark-
edly in their phylogenetic pattern. The abundance data
models using point count data were exceptions. The
model for all species showed a range of k values between
the maximal and minimal models (0.547–0.562), as did
the model for the species common to both data sets
(0.358–0.344). However, this had minimal effects on the
eventual model structure; all terms were still retained
using a k value calculated under maximum likelihood.
This is likely due to the uncertainty associated with the
phylogenetic structure of the species in this data set, but
only had a slight effect upon the results.

DISCUSSION

Our results show that response variables can be
strongly correlated to measures of species sensitivity to
habitat loss and fragmentation at local scales, in line
with previous studies (Stouffer and Bierregaard 1995b,
Kennedy et al. 2010). However, although it is often pro-
posed that species traits can therefore be used to predict
sensitivity at wider spatial and temporal scales (Castel-
letta et al. 2000, Ockinger et al. 2010), our results indi-
cate that this type of extrapolation may not be possible
given the large (up to 53%) reduction in explanatory
power when transferring models between data sets.
In general, we found evidence that a wide range of dis-

tributional, behavioral, dietary, and morphological vari-
ables can be used to indicate species sensitivity at least
locally, corroborating the findings of previous studies
(Henle et al. 2004, Sekercioglu et al. 2004, Gray et al.
2007). The best indicators in our study appear to be
number of habitats used, open habitat usage, and ant fol-
lowing behavior, as these variables were the most consis-
tently effective across different data sets. Nonetheless,
there was a lack of consistency of trait predictors
between data sets and data types, with no single trait
performing as a significant predictor for all data set or
data type combinations.
This level of inconsistency may help to explain why our

models generally had low transferability, performing most
consistently when transferred between data sets contain-
ing exactly the same species (particularly when using
occurrence data). There are a number of possible reasons
for limited transferability between data sets. Survey
method, and its associated effects on species-specific
detection probabilities, may account for some of the
reduced transferability, but not all. The high correlation

in species sensitivity scores between data sets shows that
the use of different survey methods is not biasing or con-
founding our ability to detect species sensitivity to habitat
changes. Thus, the fact that we found strong explanatory
power of response variables but low transferability of
models suggests that trait-sensitivity correlations may be
spurious and not generalizable. Another issue is the high
collinearity of the response variables, which may be the
reason why under certain circumstances model transfer
does not lead to a large drop in explanatory power but
instead to conflicting sets of variables included in final
models. This was observed with occurrence data for the
96 species where the model parameterized on the point
count data only suffered a minor drop in explanatory
power using the mist-net data, yet the mist-net data had
yielded a minimal model containing six variables, whereas
the point count model contained nine variables, with five
variables common to both.
The results of this study add to the growing consensus

of site specificity in the literature. For example, Vetter
et al. (2011) shows that that vertebrate responses to frag-
mentation can be highly site specific. Thornton et al.
(2011) went further to show that certain traits of
Neotropical mammals were more or less influential
across different sites in Guatemala and Mexico even
when the same species are considered, thus reinforcing
the idea that traits may not be consistent predictors of
species responses. As for Neotropical birds, Sigel et al.
(2010) showed that some response traits can be extre-
mely site specific and that patterns of variation were best
interpreted in the local context.
To conclude, our results suggest that response traits

should be used with caution if the aim is to understand
mechanisms of species sensitivity to habitat loss and frag-
mentation. In particular, our analyses indicate that even
when species traits predict sensitivity to habitat change,
these patterns may be inconsistent even within study com-
munities or regions, and cannot simply be extrapolated to
predict species sensitivity at broader spatial or taxonomic
scales. Thus, although trait-based proxies have become
popular short cuts in conservation forecasting and prior-
ity-setting exercises, their application across multiple
taxa, regions, and time (Henle et al. 2004) may be more
complex than first anticipated. The validity and transfer-
ability of trait-based models of species sensitivity to habi-
tat change requires more thorough investigation.
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